DOI 10.15507/2079-6900.24.202204.399-418
Original article
ISSN 2079-6900 (Print)
ISSN 2587-7496 (Online)
MSC2020 90C26, 90C56, 65K05
Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach
V. V. Zabotin, P. A. Chernyshevskij
Tupolev Kazan National Research Technical University – KAI (Kazan, Russian Federation)
Abstract. One of modern global optimization algorithms is method of Strongin and Piyavskii modified by Sergeev and Kvasov diagonal approach. In recent paper we propose an extension of this approach to continuous multivariable functions defined on the multidimensional parallelepiped. It is known that Sergeev and Kvasov method applies only to a Lipschitz continuous function though it effectively extends one-dimensional algorithm to multidimensional case. So authors modify We modify mentioned method to a continuous functions using introduced by Vanderbei $\varepsilon$-Lipschitz property that generalizes conventional Lipschitz inequality. Vanderbei proved that a real valued function is uniformly continuous on a convex domain if and only if it is $\varepsilon$-Lipschitz. Because multidimensional parallelepiped is a convex compact set, we demand objective function to be only continuous on a search domain. We describe extended Strongin’s and Piyavskii’s methods in the Sergeev and Kvasov modification and prove the sufficient conditions for the convergence. As an example of proposed method’s application, at the end of this article we show numerical optimization results of different continuous but not Lipschitz functions using three known partition strategies: “partition on 2”, “partition on 2N” and “effective”. For the first two of them we present formulas for computing a new iteration point and for recalculating the $\varepsilon$-Lipschitz constant estimate. We also show algorithm modification that allows to find a new search point on any algorithm’s step.
Key Words: global optimization, non-Lipschitz optimization, nonconvex optimization, $\varepsilon$-Lipschitz function, continuous function, convergence
For citation: V. V. Zabotin, P. A. Chernyshevskij. Continuous global optimization of multivariable functions based on Sergeev and Kvasov diagonal approach. Zhurnal Srednevolzhskogo matematicheskogo obshchestva. 24:4(2022), 399–418. DOI: https://doi.org/10.15507/2079-6900.24.202204.399-418
Submitted: 19.07.2022; Revised: 07.10.2022; Accepted: 23.11.2022
Information about the authors:
Vladislav V. Zabotin, Professor, Department of Applied Mathematics and Informatics, Tupolev Kazan National Research Technical University – KAI (55 Bolshaya Krasnaya St., Kazan 420015, Russia), Doctor of Technical Science, ORCID: https://orcid.org/0000-0002-0732-5380, v.zabotin@rambler.ru
Pavel A. Chernyshevskij, Postgraduate Student, Department of Applied Mathematics and Informatics, Tupolev Kazan National Research Technical University – KAI (55 Bolshaya Krasnaya St., Kazan 420015, Russia), ORCID: https://orcid.org/0000-0001-5036-6375, pavelcomm@mail.ru
All authors have read and approved the final manuscript.
Conflict of interest: The authors declare no conflict of interest.