ISSN 2079-6900 (Print) 
ISSN 2587-7496 (Online)

Middle Volga Mathematical Society Journal

Download article

Difference analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$

F.V. Lubyshev1, M.E. Fairuzov2

AnnotationHere we prove several multiplicative inequalities for the spaces $\stackrel{\circ}{W_2^1}\!\!(\overline\omega)$, $W_{2,0}^2(\overline\omega)$ of grid functions defined on the grid $\overline\omega\subset\overline\Omega$. The inequalities are the grid analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$.
Keywordsgrid, grid function, finite differences, embedding theorem.

1Professor of mathematics department, Bashkir State University, Ufa; v.lubyshev@mail.ru.

2Associate professor of mathematics department, Bashkir State University, Ufa; fairuzovme@mail.ru.

Citation: F.V. Lubyshev, M.E. Fairuzov, "[Difference analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$]", Zhurnal Srednevolzhskogo matematicheskogo obshchestva,12:4 (2010) 21–29 (In Russian)