Difference analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$
F.V. Lubyshev1, M.E. Fairuzov2
Annotation | Here we prove several multiplicative inequalities for the spaces $\stackrel{\circ}{W_2^1}\!\!(\overline\omega)$, $W_{2,0}^2(\overline\omega)$ of grid functions defined on the grid $\overline\omega\subset\overline\Omega$. The inequalities are the grid analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$. |
---|---|
Keywords | grid, grid function, finite differences, embedding theorem. |
1Professor of mathematics department, Bashkir State University, Ufa; v.lubyshev@mail.ru.
2Associate professor of mathematics department, Bashkir State University, Ufa; fairuzovme@mail.ru.
Citation: F.V. Lubyshev, M.E. Fairuzov, "[Difference analogues of O.A. Ladygenskaya's multiplicative inequalities for functional spaces $\stackrel{\circ}{W_2^1}\!\!(\Omega)$, $W_{2,0}^2(\Omega)$]", Zhurnal Srednevolzhskogo matematicheskogo obshchestva,12:4 (2010) 21–29 (In Russian)