DOI 10.15507/2079-6900.25.202302.62-75
Оригинальная статья
ISSN 2079-6900 (Print)
ISSN 2587-7496 (Online)
УДК 517.938
О сведении проблемы топологической классификации градиентно-подобных потоков к классификации полярных потоков
И. А. Сараев
Национальный исследовательский университет «Высшая школа экономики» (г. Нижний Новгород, Российская Федерация)
Аннотация. В статье рассматривается класс $G(M^n)$ градиентно-подобных потоков на связных замкнутых многообразиях размерности $n \geq 4$, такой что для любого потока $f^t\in G(M^n)$ устойчивые и неустойчивые многообразия седловых состояний равновесия размерности $(n-1)$ не пересекаются с инвариантными многообразиями других седловых состояний равновесия. Известно, что несущее многообразие любого потока $f^t$ из класса $G(M^n)$ раскладывается в связную сумму сферы $\mathbb{S}^n$, $g_{f^t} \geq 0$ копий прямых произведений $\mathbb{S}^{n-1} \times \mathbb{S}^1$ и односвязного многообразия, отличного от сферы. Число $g_{f^t}$ определяется только числом узловых состояний равновесия и числом седловых состояний равновесия, одно из инвариантных многообразий которых имеет размерность $(n-1)$ (такие состояния равновесия будем называть тривиальными седлами), а односвязное многообразие, отличное от сферы, присутствует в связной сумме тогда и только тогда, когда множество седловых состояний равновесия содержит точки, размерность неустойчивого многобразия которых принадлежит множеству $\{2,\dots, n-2\}$ (такие состояния равновесия будем называть нетривиальными седлами). Более того, для потоков из класса $G(M^n)$ без нетривиальных седел имеется полная топологическая классификация. В настоящей работе доказывается, что для любого потока $f^t\in G(M^n)$ разбиение несущего многообразия на связную сумму можно осуществить по попарно непересекающимся гладко вложенным сферам (разбивающим сферам), не содержащим состояний равновесия потока $f^t$ и трансверсально пересекающим его траектории. Ограничение потока $f^t$ на дополнения до этих сфер однозначно (с точностью до топологической эквивалентности и нумерации) определяет конечный набор потоков $f^t_1, \dots, f^t_l$, заданных на компонентах связной суммы. Более того, для любого $j\in \{1, \dots, l\}$, множество седловых состояний равновесия потока $f^t_j$ либо состоит только из тривиальных седел, либо только из нетривиальных, и тогда поток $f^t_j$ является полярным. Мы вводим понятие согласованной топологической эквивалентности для потоков $f^t_1,\dots f^t_l$ и показываем, что потоки $f^t, {f'}^t\in G(M^n)$ топологически эквивалентны тогда и только тогда, когда для каждого из этих потоков существуют наборы разбивающих сфер, определяющих согласованно топологически эквивалентные потоки на компонентах связной суммы.
Ключевые слова: градиентно-подобные потоки, многообразие, топологическая классификация, потоки Морса-Смейла, функция Морса
Для цитирования: Сараев И. А. О сведении проблемы топологической классификации градиентно-подобных потоков к классификации полярных потоков // Журнал Средневолжского математического общества. 2023. Т. 25, № 2. С. 62–75. DOI: https://doi.org/10.15507/2079-6900.25.202302.62-75
Поступила: 12.02.2023; доработана после рецензирования: 10.04.2023; принята к публикации: 25.05.2023
Информация об авторе:
Сараев Илья Александрович, студент факультета информатики, математики и компьютерных наук, стажер-исследователь лаборатории «Динамические системы и приложения», Национальный исследовательский университет «Высшая школа экономики» (603150, Россия, г. Нижний Новгород, ул. Большая Печёрская, д. 25/12), ORCID: https://orcid.org/0000-0002-7608-2634, isaraev@hse.ru
Автор прочитал и одобрил окончательный вариант рукописи.
Конфликт интересов: автор заявляет об отсутствии конфликта интересов.