ISSN 2079-6900 (Print) 
ISSN 2587-7496 (Online)

Middle Volga Mathematical Society Journal

Скачать статью

Моделирование управлением нелинейным объектом 3-го порядка с оптимальной стабилизацией конечного состояния

В. В. Афонин1, С. М. Мурюмин2, А. В. Мускатиньев3

АннотацияРассматривается задача оптимальной стабилизации для нелинейных объектов управления 3-го порядка, описываемых обыкновенными дифференциальными уравнениями с постоянными коэффициентами. Оптимальная стабилизация понимается в смысле минимизации квадратичного функционала для линеаризованного объекта управления. Линеаризация осуществляется на каждом шаге численного интегрирования нелинейной системы дифференциальных уравнений и рассчитывается матрица оптимального регулятора. Управление в виде обратной связи по состоянию прикладывается к нелинейному объекту на каждом шаге численного интегрирования. Приводятся результаты моделирования с построением переходных процессов систем, замкнутых на оптимальный регулятор.
Ключевые словаоптимальная стабилизация, аффинные системы управления, системы обыкновенных дифференциальных уравнений, матрица оптимального регулятора, линейно-квадратичная задача оптимального управления, обратная связь, переходный процесс, система Лоренца

1Доцент кафедры автоматизированных систем обработки информации и управления, Мордовский государственный университет имени Н. П. Огарева, г. Саранск; afoninvv@fet.mrsu.ru

2Доцент кафедры прикладной математики, дифференциальных уравнений и теоретической механики, Мордовский государственный университет имени Н. П. Огарева, г. Саранск; korspa@yandex.ru

3Доцент кафедры электроники и наноэлектроники, Мордовский государственный университет имени Н. П. Огарева, г. Саранск; muskatav@mail.ru

Цитирование: Афонин В. В., Мурюмин С. М., Мускатиньев А. В. Моделирование управлением нелинейным объектом 3-го порядка с оптимальной стабилизацией конечного состояния // Журнал Средневолжского математического общества. 2015. Т. 17, № 2. С. 7–14.