УДК 514
Слоеные модели для гладких орбифолдов и их применение
Н. И. Жукова1
Аннотация | Для любого орбифолда построена слоеная модель, представляющая собой слоение, пространство слоев которого совпадает с этим орбифолдом, каноническая проекция на пространство слоев является субмерсией в категории орбифолдов. Доказано, что группа всех диффеоморфизмов орбифолда изоморфна группе базовых автоморфизмов (в категории слоений) построенного модельного слоения. На языке модельных слоений найдены необходимые и достаточные условия для того, чтобы орбифолды были хорошими. В качестве приложения получено, что любой орбифолд, допускающий картанову геометрию нулевой кривизны, является хорошим. |
---|---|
Ключевые слова | орбифолд, слоение, связность Эресмана для слоения, картанова геометрия. |
1Жукова Нина Ивановна, профессор кафедры фундаментальной математики, Национальный исследовательский университет "Высшая школа экономики" ( 603155, Россия, г. Нижний Новгород, ул. Большая Печерская, д. 25/12.), доктор физико-математических наук, ORCID: http://orcid.org/0000-0002-4553-559X, nzhukova@hse.ru
Цитирование: Жукова Н. И. Слоеные модели для гладких орбифолдов и их применение // Журнал Средневолжского математического общества. 2017. Т. 19, № 4. С. 33–44.
DOI 10.15507/2079-6900.19.201704.33-44