Анализ устойчивости математической модели Лукаса по части переменных
Т. Ф. Мамедова1, Д. К. Егорова2, Е. В. Десяев3
Аннотация | В работе, для анализа устойчивости системы дифференциальных уравнений, используется метод Е. В. Воскресенского, основанный на методе сравнения. Предложенный подход состоит в следующем: для исследуемых уравнений строятся уравнения сравнения, поведение решений которых известно. Затем через эталонные функции сравниваются решения этих уравнений. |
---|---|
Ключевые слова | нелинейные системы обыкновенных дифференциальных уравнений, метод сравнения, модель Лукаса |
1Профессор кафедры прикладной математики, дифференциальных уравнений и теоретической механики ФГБОУ ВПО «Мордовский государственный университет им. Н.П.Огарёва», г. Саранск; mamedovatf@yandex.ru.
2Доцент кафедры прикладной математики, дифференциальных уравнений и теоретической механики ФГБОУ ВПО «Мордовский государственный университет им. Н.П.Огарёва», г. Саранск; egorovadk@mail.ru.
3Доцент кафедры прикладной математики, дифференциальных уравнений и теоретической механики ФГБОУ ВПО «Мордовский государственный университет им. Н.П.Огарёва», г. Саранск; desyaev@rambler.ru.
Цитирование: Мамедова Т. Ф., Егорова Д. К., Десяев Е. В. Анализ устойчивости математической модели Лукаса по части переменных // Журнал Средневолжского математического общества. 2015. Т. 17, № 3. С. 30–36.