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Abstract. The stability problem of a scalar functional differential equation is a classical one.
It has been most fully studied for linear equations. Modern research on modeling biological,
infectious and other processes leads to the need to determine the qualitative properties
of the solutions for more general equations. In this paper we study the stability and the
global limit behavior of solutions to a nonlinear one-dimensional (scalar) equation with
variable delay with unbounded and bounded right-hand sides. In particular, our research
is reduced to a problem on the stability of a non-stationary solution of a nonlinear scalar
Lotka-Volterra-type equation, on the stabilization and control of a non-stationary process
described by such an equation. The problem posed is considered depending on the delay
behavior: is it a bounded differentiable function or a continuous and bounded one. The
study is based on the application of the Lyapunov-Krasovsky functionals method as well
as the corresponding theorems on the stability of non-autonomous functional differential
equations of retarded type with finite delay. Sufficient conditions are derived for uniform
asymptotic stability of the zero solution, including global stability, for every continuous
initial function. Using the theorem proven by one of the co-authors on the limiting behavior
of solutions to a non-autonomous functional differential equation based on the Lyapunov
functional with a semidefinite derivative, the properties of the solutions’ attraction to the
set of equilibrium states of the equation under study are obtained. In addition, illustrative
examples are provided.
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Oo6 YCTOﬁqHBOCTH HEJIMHEMHOI0 HeEaBTOHOMHOI'O
CKaJIZAIPDHOI'O ypaBHE€HU:A C IIepeMEeHHbIM 3alla3/bIBaHneM

. X. XycaHOBl, A.2. KaxxapOB2

1 Ywusepcumem Sambhram (2. Howcusax, Ysbexucman)
2 Axademumecrudi auuet TawI' TY umenu . Kapumosa (2. Tawxenwm, Yabexucman)

AnHoramus. 3ajada yCTOWYMBOCTU CKAJISIPHOTO (PYHKIIHOHAIBHO-IU(M(MEPEHINATBHOTO
YPpaBHEHHsI MMeeT KJaccudecknii xapakrep. Hambosee monHO oHa m3ydeHa AJjIsi ypaBHe-
Huii inaeitnoro Tuna. CoBpeMeHHbIE UCCJIEIOBAHUS 110 MOJICJIUPOBAHUIO OMOJIOTUIECKUX, UH-
bEKIMOHHBIX U JAPYIUX IIPOIECCOB NMPUBOLAT K HEOOXOIUMOCTH OIPEJECJICHUsT KadeCTBEH-
HBIX CBOWCTB pelnieHnii Oosree obmmx ypaBHeHuili. B nannHoil pabore m3ydaercs 3aaada
00 yCTOWYHBOCTH ¥ TJIO0AJIBHOM MPEAEIbHOM IIOBEIEHUN PENIeHN HEJIUMHEHHOTO OIHO-
MepHOro (CKaJIsIPHOIO) yDaBHEHWs! C IIE€PEMEHHBIM 3alla3/blBAHMEM, C HEOIDAHWYEHHOH U
OrpaHUYEeHHON mHpaBoil JacThio. K Takoil 3ajade, B YACTHOCTH, CBOISTCS WCCJIEIOBAHUSA:
006 yCTOWYMBOCTH HECTAIIMOHAPHOTO PEIIeHUs] HEJIMHEHHOIO CKAJISPHOrO ypPaBHEHWS THIIA
Jlorkn-Bosbreppa, 0 crabuimsanyuy M yIPaBJIEHNN HECTAIMOHAPHBIM IIPOIECCOM, OIMCHI-
BaeMbIM TaKuUM ypaBHeHueM. llocTaBiieHHas 3ajiada PACCMOTPEHA B 3aBUCHUMOCTU OT CJIy-
4JaeB: 3alla3/IbIBAHKE sIBJISIETCA OrpaHuYeHHON auddepeHnupyeMoit GpyHKIMed nin Herpe-
PBIBHBIM W OrpaHWYeHHBIM. VcciteoBaHne OCHOBAHO Ha MPUMEHEHWW MeTOoj1a (DYHKIMOHA-
JioB JIsimyHnoBa-KpacoBCKOro u cOOTBETCTBYIOIMIMX TEOPEM 00 YCTOWYMBOCTH HEABTOHOMHBIX
dyuknronaabHo-IuddEPEHINATLHBIX YPABHEHNAN 3ala3/bIBAIONIET0 THIIA ¢ KOHEYHBIM 3a-
Ma3bIBAHNEM. BBIBEIEHBI JOCTATOYHBIE YCIOBUsI PABHOMEPHON aCHMIITOTHUYECKON yCTONYIM-
BOCTH HYJIEBOI'O PEIEeHUsI, B TOM YHUCJIE, TVIODAIBHOM MpH JIOOBIX HaYaIbHBIX HEIIPEPBIBHBIX
dbyukuax. [To Teopeme ogHOr0 U3 COABTOPOB 00 MCCJIETIOBAHUY MIPEIEIHLHOTO TOBEJIEHUST Pe-
IIIEHUI HEABTOHOMHOI'O (DYyHKITMOHAJILHO- UMD DEPEHINATBHOIO yPaBHEHUSI Ha OCHOBE (DYHK-
nuonHasa JIsamyHoBa CO 3HAKOIIOCTOSTHHON ITPOU3BOJIHON BBIBOJATCS CBOWCTBA HMPUTIKEHUST
peIlleHnii K MHOYKECTBY COCTOSIHUII paBHOBECHsI MCCJIeIyeMoro ypasHeHusi. [IpuBemennbr ui-
JIIOCTPATUBHBIE TIPUMEPHI.

KiroueBrblie ciioBa: HesmHelHOe cKajsipHOe quddepeHnalbHoe ypaBHEHNE, TePEMEHHOE
3amna3/ibIBaHNe, yCTOWINBOCTD, MIPUTSIYKEHNE peleHuit, pyHkimonan JIsmyHosa
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1. Introduction

The needs of science and technology in the middle of the last century stimulated the
intensive development of the stability theory for functional differential equations [1-4].

In the monograph [1], fundamental results on the study of scalar linear equations were
obtained. The stability problem of such an equation has been the subject of active study to
this day [5—10]. Equations with distributed and several discrete delays including those with
unbounded one are considered. Research in [5-8|, [10] was carried out by direct analyzing of
the solutions including their comparison and construction of successive approximations. The
same approach was used in the works [10], [11] and others to obtain the stability conditions
for the zero solution of a scalar nonlinear equation. It was assumed that the right-hand
side of the equation is estimated modulo by a linear function with a time-independent
proportionality coefficient. In [12—-14] these results are generalized in the direction of sufficient
conditions for uniform asymptotic stability with a coefficient unbounded in time. For this
purpose, these works developed the method of Lyapunov-Krasovsky functionals in studying
the stability of non-autonomous functional differential equations with an unbounded right-
hand side in time.

Modern modeling in biology and epidemiology, in the neoclassical theory of population,
living systems and other systems and processes leads to the need to study the qualitative
properties of solutions to nonlinear nonautonomous differential equations that have two
or more stationary states, periodic or chaotic changes in variables. The application of the
obtained results to such problems is indicated in the works [8], [10], [15-18]. In the works
[8], [10] the stability of models of population dynamics described by the Hutchinson and
Mackey-Glass equations was studied. The work [15] considers the model of a living system
based on an integral equation that reduces to a non-autonomous non-linear scalar equation
with a finite or distributed delay. Stationary solutions are found and the asymptotic behavior
of the perturbed solutions is studied.

The presented analysis shows that the problem of nonlocal limit properties of an
essentially nonlinear nonautonomous equation with delay, which has a non-unique stationary
solution, remains insufficiently studied.

In this paper, we study the stability problem and the global limit behavior for the
solutions of a nonlinear equation with variable delay, with unbounded and bounded right-
hand sides. Sufficient conditions for uniform asymptotic stability are derived, including
global, zero solution, and attraction of solutions to a set of equilibrium states. In addition,
we provide illustrative examples.

2. Formulation of the stability problem

Let R be the real axis, and let hg > 0 be a given number. Denote by C the Banach space
of the continuous functions ¢ : [—hg,0] — R with the norm |p| = max_p,<s<o(J¢(s)]).
For a continuous function z : R — R and ¢t € RT = [0, +0c) define the function z; € C by
the equality x¢(s) = z(t + s) (s € [—ho,0]). Denote by @(t) the right-hand derivative of the
function x = x(t).

Consider the functional-differential equation

@(t) = a(t, ze)g(x(t)) + b(t, x)q(t, x(t — h(t))), (2.1)

where t € Rt; a,b € C(RT x C — R); h € C(RT — [0, ho)); the functions g € C(RT — R)
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and ¢ € C(RT x R — R) are such that

g(0) =0, ¢(t,0) = 0.

Without loss of generality, assume that for each initial point (a,¢) € RT x C there
exists a unique solution of equation (2.1) x = z(t, o, ¢) that satisfies the initial condition
ZTo = Ta(a, @) = ¢ and is defined at ¢ € [ — ho, 5) (8 > «). Equation (2.1) has a zero
solution z(t,«,0) =0 (Vt > « — hg).

Consider the stability problem of the zero solution « = 0 of equation (2.1) and the limit
behavior of its bounded solutions © = x(t, a, ¢), |x(t, o, ¢)| < H = const (t > a — hg).

For convenience sake, let us introduce the class K of Hahn-type functions [4] which
are continuous and strictly monotonically increasing functions d; : Rt — R*, d;(0) = 0,
i=1,2,...

3. On the solution to the stability problem without the
boundedness assumption of the right-hand side of equation (2.1)

Let us study the above formulated stability problem under the following assumptions
about the functions g = g(z) and h = h(¥)

la(t, )] < p(t, H)lg(2)l, lg(x)] < L(H1)|z| V(t,2) € RT x {|z| < Hy = const > 0}, (3.1)

h € C’l(}RJr — [O,ho]), h(t) = %it) § 1-— h,l, hl = const > 0. (32)
Theorem 3.1. Assume that the following conditions hold:
1) g(w)x >0, Vre{0<|z|< Hy<H};
2) [b(t, @) |u(t, Hi) < aol(p)(1=h(1)'/2, 1(p) > 0, A(t, ) = 2a(t, ) +aol*(p) < —ag—eo
(ap >0, €0 >0) V(t,p) e RT x {p e C:|l¢| < Hi}.
Then the solution x = 0 of equation (2.1) is uniformly asymptotically stable.

P roof. Let usintroduce the following function and functional

0
Glz) = / 9()r, Vitg) = Glel(0) + 5a0 /( | ¢ (p(r)dr. (33)

It follows from condition 1 of the theorem that there exists a function d; € K such that

V(t, ) = di(l(0)]).

Using inequalities from (3.1) we find the estimate

0 0
Vt.) < Gle0) + 300 [ g*elr)dr < SLERIO)F + jaul(Hy) [ G (ryir <
—h(t) —ho
< SIL(E)OF +aoL2(H) |21, (34)
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where the norm

0 1/2
llelll = (/ S (r)dr
ho

is introduced in accordance with the theorem from [12].

According to inequalities (3.1), (3.2), and using the second inequality from condition 2 of
the theorem, one can obtain the following estimation for the time derivative of the functional
V' due to the equation (2.1)

V(t:) = (alt, o)+ 50)g% (2(0)+5(t, £)g(£(0))alt, o ~h(0)~ 50 (1-h(t))g? (o~ (1)) <
< (alt, ) + 500)5(£(0)) + [b(t, 2)lg (o0l o~ O] — 2 (1 ~ h(B)g(e(~h(1) <
< (alts ) + 500)g% (£(0)) + aol() (1~ h(t)"lg((O)lg(e(~h(1)~
201 = )G (P(~h(1))) < 5(AlE ) + a0)g? (5(0)) < — 206 ((0)).

Thus, all the assumptions of the corresponding theorem from [12] hold. Hence, the
theorem is proved.
The following result holds.

Theorem 3.2. Assume that the following conditions are satisfied:
1) g(z)z <0, VeeD={xeR: —H; <—-Hy<z<0};

2) condition 2 of Theorem 3.1 holds.

Then the solution x = 0 of equation (2.1) is unstable.

P r o o f. For definiteness, let us assume that condition 1 of the theorem holds for all
2 € D. From this, using inequalities (3.1) one can find the functions dy,ds € K such as

di(|z]) < g(z) < L(H)|z[;  —G(2) < ds([z]) Ve e D. (3-5)

Consider the functional

0
V= Vitp) = ~Ge0) - 00 [ (o) (3)
—h(t)

By virtue of inequalities (3.5), there exists an open set Cy with boundary {x = 0} € 9C,
defined by the equality Co = {p € C: (s) <0, ||¢|| < Ho, V(t,) > 0}.
Moreover, by the definition (3.6) of V (¢, ¢), we have

V=Vt ¢) < dz(|]p(0)]) Ve € Co. (3.7)

For the derivative of the functional V' = V (¢, ¢) by virtue of condition 2, in the domain
RT x {p € C: ¢(s) <0, ||¢|]| < H1}, we have the estimates

1

V(t, ) = —alt, ©)g*(¢(0)) — b(t, ©)g(£(0))q(t, o(—h(t))) — 509°(#(0))+
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. 1

508 ((=h() (1L~ h(t)) = ~(a(t, o) + 3a0)g(o(0)) -

—aol(p)(1 = (1)) ?g((0))g (p(—h(1)))+

+ 308 (p(—h()(1L = h($) 2 ~(Alt,9) +a0)g?(6(0)) >

> 2 20g(p(0)) > S2odd (1 (0)). (33)

From inequalities (3.7) and (3.8) along the solution x = z(t, a, ), (a, p) € RT x Cq of
equation (2.1), we obtain the relation

(1,21l 9) 2 5eod(dy (Ve 0, 9).

Hence, it follows that z:(«, @) € Co Vt € [a, ), and the equality z(¢, o, ¢) = —Hj holds
for t = . This proves the theorem.

Let us study the uniform attraction problem of the zero solution of equation (2.1). For
this, note that T. A. Burton’s theorem from [12] can be developed for such a problem as
well. On this basis, similarly to Theorem 3.1, the following theorem can be proved.

Theorem 3.3. Assume that inequality (3.1) and the conditions of Theorem 3.1
are satisfied for all (t,z) € RT x R and all (t,¢) € RT x C, and also the following holds

3) there exist sequences x — oo and x; — —oo such that G(xy) — oo and G(x;) = oo
as k,l — oo.

Then the solutions of equation (2.1) are uniformly bounded and the zero solution x = 0
of equation (2.1) is globally uniformly asymptotically stable.

Example 3.1. Consider the equation
#(t) = a(t) sinz(t) + b(t) sin(u(t)z(t — h(t))), (3.9)

in which the delay h(t) satisfies the inequalities (3.2), and the coefficients a(t) and b(t) are
such that the following inequalities are satisfied

a(t) < —ag—e (ap >0, e>0), [b)ut)| < ao(l — h(t)/2

Based on Theorem 3.1, one can find that the solution = 0 of the equation (3.9) is
uniformly asymptotically stable. Moreover, x = 0 is the point of attraction for all solutions
x = z(t,a, ) bounded at ¢ > « by the region {|z| < T}. It is easy to find an estimate of
the area of attraction based on the functional

0
1

V(t,p) =1—cos(p(0)) + 3 / sin?(¢(7))dr.

—h(t)

When the condition regarding the coefficient a(t) changes to the condition a(t) > ag + ¢
(ap > 0, € > 0), the solution x = 0 to the equation (3.9) is unstable according to Theorem
3.2.

JI. X. Xycanos, A. A. KaxxapoB. O6 ycTOIHYHBOCTH HEJIMHEHHOTO HEABTOHOMHOIO CKAJISIPHOIO YDABHEHHSI . . .



2Kypnas CpeiHeBOJIZKCKOro MareMarudeckoro obmiecrsa. 2023. T. 25, Ne 4. 305

4. On the solution to the stability problem when the right-hand
side of equation (2.1) is bounded

Let us consider the stability problem posed under the conditions of boundedness of the
functions a(t, p) and b(t, ¢)

la(t, ©)| < ag = const, |b(t, )| < by = const

Y(t,p) e RT x {p € C: |l¢|| < Hy = const > 0}. (4.1)

Consider the equation

3(0) = an(t. )9 u®) + b1 () (9(0) = iltw) [ ol ) 207 9(7)

S g ()i
t*hl(t)
/ 0
T, y(T
“nt) [ o) G gy - mear (1.2
t—hi(t)
al(ta 1/}) - a’(hO +1, w)a by (ta 1/)) - b(hO +1, 1/))
@1 (t,y) = qlho +t,y), ha(t) =h(ho +1)
with domain R x C,,, where C,; is the Banach space of continuous functions v : [—2hg, 0] —

R.

Each solution z = z(t,a, ¢) (a, ) € RT x C of equation (2.1) coincides at t > a + ho
with the solution y = y(t, o, ¥) of equation (4.2) with the initial function ¢ : [—2hg,0] — R
defined by the equality

P(s) = @(ho +5), —2hg <s < —hg;

Y(s) =z(a+s+ho, o), —ho<s<0.

Therefore, from the solutions limiting properties of equation (4.2), similar solutions
limiting properties of equation (2.1) hold. In addition to conditions (4.1), we also assume
that there exist the function p; = p1(t), g1 : R — R and the positive reals us and M such
as

bt,p) <0 V(t,p) € RT x {|lo]| < Hi},

0 < () < qlt, ) /g(x) < pia, %]gM V(t,2) eR* x {z e R: |o < By} (&P)

Theorem 4.1. Assume that the conditions are fulfilled:

1) g(zx)z >0, Vee{reR: 0<|z|<Hy<H};

2) B(t, QD) = a(t, QD) + ul(t)b(t, (p) + Mboho(ao + ‘LLQb()) < —g9 <0 V(t, 50) e Rt x {(p €
C: ol < Hy}.

Then the solution x = 0 of equation (2.1) is uniformly asymptotically stable.

P roof. As noted above, the solution to the stability problem for the zero solution
x = 0 of equation (2.1) is reduced to the solution of the stability problem for the solution
y = 0 of equation (4.2).

J. Kh. Khusanov, A. E. Kaxxorov. On the stability of a nonlinear nonautonomous scalar equation with. ..
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To solve the stability problem, we choose the Lyapunov functional candidate as follows

V1<w>=G<w<0>>+m/O /092(¢(8))d8 dr +vp /h0 /092(1/}(8))ds dr,  (44)

where vy = 2 Magbo and vo = £ Mb3.

The derivative of the functional V;(3) by virtue of equation (4.2) has the following
expression

0

[ anlerron) 2 g O (r)ar-
—h1(t
) (t)
[ w2 gDt — )i+
—hi(t)
0 —hg
™ / (2(@(0)) — G2 (W(7))dr + v / (2((0)) — ¢*(4(7)))dr. (4.5)
—hg —2hg

By virtue of conditions (4.3), the derivative (4.5) has the estimates

Vit 0) < (ar(t,) + pa (H)bi(t,¥) + (1 + v2)ho)g® (¥(0)+

M lba(t, ) / lax(t + 7,9)] [ ($(0)) g ()| dr+

—ho
—ho

Mpafor(t. )| [ [ba(e + 7 0)lg O lgw () ldr <
—2hgo

< (a1 (t,9) + p ()ba(t,9) + Mboho(ao + p2bo))g*(#(0)) = Ba(t,9)g*(4(0)).  (4.6)
Thus, using (4.6) we find that

V(t,9) < —20g?((0))
by virtue of condition 2 of the theorem.

According to the theorems from the monographs [3], [4], we obtain the proof of the
theorem.

Assume that the function g(z) satisfies the condition
lg(x)| < L(Hy)|z| Veze{zeR: |z| <H >0}
Theorem 4.2. Assume that condition 1) of Theorem 3.2 is satisfied as well as

the following condition

2) A(t,0) = a(t,p) + b(t, ) + Mboho(ag + bo) < —eo < 0 holds.
Then the solution x = 0 of equation (2.1) is unstable.
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P roof To obtain the proof, as in Theorem 3.2, note that the relationship (3.5) holds.
Consider the functional V5(¢) = —=V4(¢) in accordance with formula (4.4).
As in Theorem 3.2, we find the set Cy(V2) as follows

Co(Va) ={v € Cy : 9(s) <0, |9l < Ho, Va(¥) > 0}.
We have an inequality of type (3.7)

Va() < da([9(0)]) Vi € Co(Va).

For the derivative of the functional Vo = V() by virtue of condition 2 of the theorem,
in the domain Rt x {¢) € Cy : ¢(s) <0, ||¢|| < Hy}, in accordance with calculations (4.5)
and (4.6), we find

Va(t, ) = eodi(dy ' (Va(¥))).
From here, as in Theorem 3.2, we get the instability property of the solution y = 0 of equation
(4.2) and, accordingly, the solution 2 = 0 of equation (2.1) is unstable. This completes the
proof.

Example 4.1. Consider the equation

#(t) = a(t)z®(t) + b(t) sin® (z(t — h(t))), (4.7)
for which the following inequalities are satisfied
la(t)] < ag, —bo<b(t)<0, 0<h(t)<hy VteR'. (4.8)

Based on Theorem 4.1, one can find that if the following condition holds
1
a(t) + gb(ﬁ) + Sboho(ao + bo) < —gp <0,

then the solution x = 0 of equation (4.7) is uniformly asymptotically stable with the
attraction of all solutions x = z(¢, a, ¢) bounded at t > « by the region {z € R : |z| < 7/2}.

Let us study the problem of the global behavior of solutions, when equation (2.1) has
an infinite number of equilibrium positions, of course on a finite interval. The boundedness
of the right-hand side of equation (2.1) by virtue of conditions (4.1) and (4.3) on bounded
solutions ensures their uniform continuity as t € [« + h,00). This allows us to apply the
theorem on the solutions limiting behavior of functional-differential equations from [19],
[20].

Let us consider the problem of the solutions attraction under the assumption

lg(t, z)| < polg(x)| (o >0) V(t,z) € RT x R.

Denote Ny = {z € R : g(z) = 0}. Assume that for each H; > 0 the set No N {z € R :
|z| < Hy < oo} consists of a finite number of points.

Theorem 4.3. Assume that:
1) dependencies a(t, ) and b(t, ) satisfy the inequality

B(t, @) = al(t, ) + polb(t, )| + Mboho(ag + bopo) < —c0 <0 V(t,¢) € RT x C;

2) there exist sequences x — 0o and x; — 00 such that G(xy) — oo and G(x;) — o0 as
k,l — oco.

Then each solution of equation (2.1) converges asymptotically to one of the equilibrium
positions as t — 00, i. e. there exists the point x* € Ny such as x(t,, p) = z* as t — co.
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Proof Asshown, the problem of the limiting behavior of solutions to equation (2.1)
reduces to the same problem for equation (4.2).

Let Hy > 0 be an arbitrary positive real, Coy, = {¢p € Cy : ||¢|| < Ho}. For the functional
(4.4), we have the estimate

0 0 —ho O
Vi($) < G(0)) + 14 / ( / G2 ((s))ds)dr + v / ( / G2 ((s))ds)dr < Vo,
—ho T —2ho T

Vo = sup,<m, (l9(x)|(Ho + (11 + va)hilg(x)|/2)).

According to condition 2 of the theorem, there is a value Hy > Hy such that G(Hy) > V.
By virtue of condition 1 of the theorem, the derivative V;(¢,4) of the functional Vj(v))
satisfies the inequality

Vi(t, ) < (a(t, ) + polblt, )| + Mboho(ao + bogo))g*(1(0)) < —e0g*(1(0)) < 0.

For any solution y = y(t,a,v), (a,9) € Rt x Coy of equation (4.2), the inequality
Vi(y:(e,¥)) < Vo < G(Hy) holds, and hence, |y(t,a,v¢)| < Hy Vi > a.

According to the theorem from [19], [20], it also follows that each solution of (4.2) is such
that y(t, a,v) — Ny as t — oo. But since the set Ny = NoN{z € R: |z| < H;} consists of
a finite number of points, it follows that there exists =y € Ny such that y(t,a,¢) — xf as
t — oo [19], [20].

The following corollary directly follows from Theorem 4.3.

Consequence 4.1. Assume that under the conditions of Theorem 4.3, also
the inequality g(x)x >0 VYV € R\ {0} holds. Then the solution x = 0 of equation (2.1) is
globally uniformly asymptotically stable.

Example 4.2. Consider the equation
#(t) = a(t)z(t) sin®(x(t)) + b(t) sin® (2 (t — h(t))), (4.9)
in which the coefficients a(t) and b(t), and the delay function h(t) satisfy the inequalities
a(t) > —ag (ap >0), [b(t)] <bo, a(t)+ |b(t)|+ 3boho(ap+ bo) < —ep < 0.

In accordance with Theorem 4.3, one cane find that the solution x = 0 of equation (4.9)
is uniformly asymptotically stable. In addition, for each solution z(¢, v, ) of equation (4.9),
the following holds z(t,a, ) =z € Ny ={zx € R:x =k, k € Z}.

5. Conclusion

For a sufficiently wide class of non-linear non-autonomous scalar functional-differential
equations, sufficient conditions for the limit behavior of their solutions are derived: stability,
including robust and global uniform asymptotic stability of the zero solution; attraction
of solutions to the equilibrium position. This class includes linear equations with variable
delay and variable coefficients of a general form. The obtained results can be used to study
stability based on the expansion of the right-hand side of various equations of this type,
stability in the presence of perturbations.
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