DOI 10.15507/2079-6900.24.202202.141-150 Оригинальная статья ISSN 2079-6900 (Print) ISSN 2587-7496 (Online)

УДК 517.938

О возмущениях алгебраических периодических автоморфизмов двумерного тора

В. З. Гринес, Д. И. Минц, Е. Е. Чилина

Национальный исследовательский университет «Высшая школа экономики» (г. Нижний Новгород, Российская Федерация)

Аннотация. Согласно результатам В. З. Гринеса и А. Н. Безденежных, для каждого градиентно-подобного диффе
оморфизма замкнутой ориентируемой поверхности ${\cal M}^2$ существуют градиентно-подобный поток и периодический диффеоморфизм этой поверхности, такие что исходный диффеоморфизм является суперпозицией диффеоморфизма, являющегося сдвигом на единицу времени потока, и периодического диффеоморфизма. В случае, когда M^2 является двумерным тором, имеется топологическая классификация периодических отображений. При этом известно, что существует лишь конечное число классов топологической сопряженности не гомотопных тождественному периодических диффеоморфизмов и каждый такой класс содержит представителя, являющегося периодическим алгебраическим автоморфизмом двумерного тора. Периодические автоморфизмы двумерного тора не являются структурно устойчивыми отображениями и предсказать динамику сколь угодно малых их возмущений невозможно. Однако в том случае, когда периодический диффеоморфизм является алгебраическим, в работе строится однопараметрическое семейство отображений, состоящее из исходного периодического алгебраического автоморфизма при нулевом значении параметра и градиентно-подобных диффеоморфизмов двумерного тора при всех значениях параметра, не равных нулю. Каждый диффеоморфизм построенных однопараметрических семейств наследует, в определенном смысле, динамику возмущаемого периодического алгебраического автоморфизма.

Ключевые слова: двумерный тор, негиперболический алгебраический автоморфизм, однопараметрические семейства

Для цитирования: Гринес В. З., Минц Д. И., Чилина Е. Е. О возмущениях алгебраических периодических автоморфизмов двумерного тора // Журнал Средневолжского математического общества. 2022. Т. 24, № 2. С. 141–150. DOI: https://doi.org/10.15507/2079-6900.24.202202.141-150

Об авторах:

Гринес Вячеслав Зигмундович, профессор кафедры фундаментальной математики, Национальный исследовательский университет «Высшая школа экономики» (603150, Россия, г. Нижний Новгород, ул. Б. Печерская, д. 25/12), доктор физикоматематических наук, ORCID: https://orcid.org/0000-0003-4709-6858, vgrines@yandex.ru Минц Дмитрий Ильич, стажер-исследователь Международной лаборатории динамических систем и приложений, ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики» (603155, Россия, г. Нижний Новгород, ул. Б. Печерская, д. 25/12), ORCID: https://orcid.org/0000-0003-0329-6946, dmitriimints@gmail.com Чилина Екатерина Евгеньевна, стажер-исследователь Международной лаборатории динамических систем и приложений, ФГАОУ ВО «Национальный исследовательский университет «Высшая школа экономики» (603155, Россия, г. Нижний Новгород, ул. Б. Печерская, д. 25/12), ORCID: https://orcid.org/0000-0002-1298-9237, k.chilina@yandex.ru

 $Original\ article$

MSC2020 37C05

On perturbations of algebraic periodic automorphisms of a two-dimensional torus

V. Z. Grines, D. I. Mints, E. E. Chilina

Higher School of Economics (Nizhny Novgorod, Russian Federation)

Abstract. According to the results of V. Z. Grines and A. N. Bezdenezhnykh, for each gradient-like diffeomorphism of a closed orientable surface M^2 there exist a gradient-like flow and a periodic diffeomorphism of this surface such that the original diffeomorphism is a superposition of a diffeomorphism that is a shift per unit time of the flow and the periodic diffeomorphism. In the case when M^2 is a two-dimensional torus, there is a topological classification of periodic maps. Moreover, it is known that there is only a finite number of topological conjugacy classes of periodic diffeomorphisms that are not homotopic to identity one. Each such class contains a representative that is a periodic algebraic automorphism of a two-dimensional torus. Periodic automorphisms of a two-dimensional torus are not structurally stable maps, and, in general, it is impossible to predict the dynamics of their arbitrarily small perturbations. However, in the case when a periodic diffeomorphism is algebraic, we constructed a one-parameter family of maps consisting of the initial periodic algebraic automorphism at zero parameter value and gradient-like diffeomorphisms of a twodimensional torus for all non-zero parameter values. Each diffeomorphism of the constructed one-parameter families inherits, in a certain sense, the dynamics of a periodic algebraic automorphism being perturbed.

Keywords: two-dimensional torus, nonhyperbolic algebraic automorphism, one-parameter families

For citation: V. Z. Grines, D. I. Mints, E. E. Chilina. On perturbations of algebraic periodic automorphisms of a two-dimensional torus. Zhurnal Srednevolzhskogo matematicheskogo obshchestva. 24:2(2022), 141–150. DOI: https://doi.org/10.15507/2079-6900.24.202202.141-150

About the authors:

Vyacheslav Z. Grines, Professor of the Department of Fundamental Mathematics, National Research University «Higher School of Economics» (25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603150, Russia), Dr.Sci. (Phys.-Math.), ORCID: https://orcid.org/0000-0003-4709-6858, vgrines@yandex.ru

Dmitrii I. Mints, Research Assistant, International Laboratory of Dynamical Systems and Applications, National Research University «Higher School of Economics» (25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, Russia), ORCID: https://orcid.org/0000-0003-0329-6946, dmitriimints@gmail.com

Ekaterina E. Chilina, Research Assistant, International Laboratory of Dynamical Systems and Applications, National Research University «Higher School of Economics» (25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, Russia), ORCID: https://orcid.org/0000-0002-1298-9237, k.chilina@yandex.ru

1. Введение и формулировка результатов

Пусть f — диффеоморфизм двумерного тора и p — его периодическая гиперболическая точка. Обозначим через W^s_p и W^u_p устойчивое и неустойчивое многообразия точки

V. Z. Grines, D. I. Mints, E. E. Chilina. On perturbations of algebraic periodic automorphisms of a...

p соответственно, а через Ω_f – неблуждающее множество f.

Напомним, что диффеоморфизм f называется диффеоморфизмом Морса-Смейла, если множество Ω_f конечно и гиперболично и многообразия W_p^s , W_q^u пересекаются трансверсально для любых периодических точек $p,q\in\Omega_f$. Диффеоморфизм Морса-Смейла f называется градиентно-подобным, если из условия $W_p^s\cap W_q^u\neq\emptyset$ для различных точек $p,q\in\Omega_f$ следует, что $\dim W_p^u<\dim W_q^u$ (под $\dim X$ подразумевается топологическая размерность множества X).

Обозначим через $W_p^{\nu,i}$ $(i \in \{1,2\}), \nu \in \{u,s\}$, компоненту связности множества $W_p^{\nu} \setminus \{p\}$. Непосредственно проверяется, что диффеоморфизм Морса-Смейла f, заданный на двумерном торе, является градиентно-подобным тогда и только тогда, когда $W_p^{u,j} \cap W_a^{v,i} = \emptyset$ для каждой пары седловых периодических точек p,q и любых $i,j \in \{1,2\}$.

 $\cap W_q^{s,i} = \emptyset$ для каждой пары седловых периодических точек p,q и любых $i,j \in \{1,2\}$. Представим двумерный тор \mathbb{T}^2 как фактор-группу группы \mathbb{R}^2 по целочисленной решётке $\mathbb{Z}^2: \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ с естественной проекцией $p_2: \mathbb{R}^2 \to \mathbb{T}^2$ и обозначим через $[z]_{p_2}$ смежный класс группы \mathbb{R}^2 по группе \mathbb{Z}^2 , содержащий точку $z \in \mathbb{R}^2$.

Пусть $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in GL(2,\mathbb{Z})$, т. е. A — целочисленная квадратная матрица второго порядка и $\det A=\pm 1$. Тогда отображение $\hat{A}\colon \mathbb{T}^2\to \mathbb{T}^2$, заданное формулой $\hat{A}\left(\left[(x,y)\right]_{p_2}\right)=\left[(ax+by,cx+dy)\right]_{p_2}$, является алгебраическим автоморфизмом двумерного тора.

Согласно работе [1], алгебраический автоморфизм \hat{A} называется гиперболическим, если собственные значения матрицы $A \in GL(2,\mathbb{Z})$ не равны по модулю единице. В противном случае автоморфизм \hat{A} будем называть негиперболическим.

Хорошо известно (см. [2], Теорема 1), что гиперболические алгебраические автоморфизмы двумерного тора являются структурно устойчивыми отображениями. Негиперболические автоморфизмы двумерного тора не являются структурно устойчивыми отображениями, поэтому представляет интерес изучение возмущений таких автоморфизмов.

Согласно работам [3] (Лемма 3) и [4] (разделы 2–3), каждый класс сопряженности негиперболических алгебраических автоморфизмов двумерного тора посредством алгебраического автоморфизма задается в точности одной из следующих матриц:

$$A_1(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, \ A_2(m) = \begin{pmatrix} -1 & m \\ 0 & -1 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$
$$A_5 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ A_6 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \ A_7 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}, \ m \in \{0, 1, 2, \dots\}.$$

Напомним, что отличный от тождественного гомеоморфизм f замкнутой ориентируемой поверхности называется периодическим, если существует $n \in \mathbb{N}$, такое что $f^n = id$. Наименьшее из таких n называется периодом f.

Матрица $A_1(0)$ индуцирует тождественное отображение двумерного тора. Матрицы $A_2(0), A_3, A_4, A_5, A_6, A_7$ индуцируют периодические автоморфизмы двумерного тора, а матрицы $A_1(m)$ и $A_2(m)$ при $m \neq 0$ индуцируют непериодические автоморфизмы двумерного тора.

Согласно результатам В. З. Гринеса и А. Н. Безденежных [5], любой градиентноподобный диффеоморфизм замкнутой ориентируемой поверхности является суперпозицией сдвига на единицу времени некоторого градиентно-подобного потока и периодического гомеоморфизма. Рассмотрим однопараметрические семейства M_{ε} , K_{ε} и J_{ε} диффеоморфизмов двумерного тора, такие что при $\varepsilon = 0$ они являются тождественными отображениями, а при $\varepsilon \in (-1,0) \cup (0,1)$ – сдвигами на единицу времени потоков с гиперболическими состояниями равновесия, фазовые портреты которых в фундаментальной области действия группы \mathbb{Z}^2 на \mathbb{R}^2 при $\varepsilon \in (-1,0)$ представлены на Рис. 1.1. При $\varepsilon \in (0,1)$ их фазовые портреты получаются из представленных на Рис. 1.1 обращением времени в обратную сторону. Построение таких семейств описано в разделе 3.

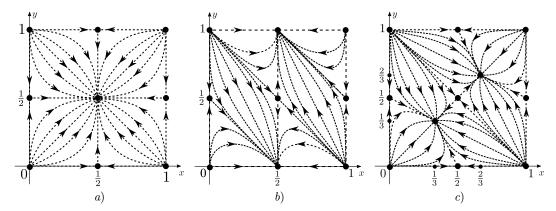


Рис. 1.1. Фазовые портреты потоков с гиперболическим состоянием равновесия: а) M_{ε} ; b) K_{ε} ; c) J_{ε}

Fig 1.1. Phase portraits of flows with hyperbolic equilibrium: a) M_{ε} ; b) K_{ε} ; c) J_{ε}

Введём однопараметрические семейства диффеоморфизмов следующими формулами: $\mathcal{M}_{\varepsilon,A} = M_{\varepsilon} \circ \hat{A}$, $\mathcal{K}_{\varepsilon,A} = K_{\varepsilon} \circ \hat{A}$ и $\mathcal{J}_{\varepsilon,A} = J_{\varepsilon} \circ \hat{A}$, где \hat{A} – автоморфизм двумерного тора, индуцированный матрицей $A \in GL(2,\mathbb{Z})$.

Т е о р е м а 1.1. Для любого $\varepsilon \in (-1,0) \cup (0,1)$ верны следующие утверждения:

- 1) отображения $\mathcal{M}_{\varepsilon,A_2(0)}$, $\mathcal{M}_{\varepsilon,A_3}$, $\mathcal{K}_{\varepsilon,A_4}$, $\mathcal{M}_{\varepsilon,A_5}$, $\mathcal{J}_{\varepsilon,A_6}$, $\mathcal{J}_{\varepsilon,A_7}$ являются градиентноподобными диффеоморфизмами;
- 2) любая периодическая точка каждого диффеоморфизма из пункта 1 является периодической точкой того же периода относительно возмущаемого алгебраического автоморфизма.

2. Динамика периодических алгебраических автоморфизмов двумерного тора

Пусть f – гомеоморфизм замкнутой ориентируемой поверхности M периода n. Обозначим через \mathcal{B}_f множество точек поверхности M, период которых строго меньше n. Если f сохраняет ориентацию, то, согласно работе [6], множество \mathcal{B}_f конечно.

Пусть $a \in [0,1)$. Обозначим через $\mathbb{S}^1_{x=a}$ ($\mathbb{S}^1_{y=a}$) окружность на двумерном торе \mathbb{T}^2 , которая является образом прямой x=a+k (y=a+k), где $k\in\mathbb{Z}$, относительно естественной проекции $p_2\colon \mathbb{R}^2 \to \mathbb{T}^2$.

Автоморфизм $\hat{A}_2(0)$ является сохраняющим ориентацию отображением периода 2. Его множество $\mathcal{B}_{\hat{A}_2(0)}$ состоит из неподвижных точек – $p_2(0,0), p_2\left(0,\frac{1}{2}\right), p_2\left(\frac{1}{2},0\right)$ и

V. Z. Grines, D. I. Mints, E. E. Chilina. On perturbations of algebraic periodic automorphisms of a . . .

$$p_2\left(rac{1}{2},rac{1}{2}
ight)$$
, где $p_2\colon \mathbb{R}^2 o \mathbb{T}^2$ – естественная проекция.

Автоморфизм \hat{A}_3 является меняющим ориентацию отображением периода 2. Его множество $\mathcal{B}_{\hat{A}_3}$ состоит из двух окружностей: $\mathbb{S}^1_{y=0}$ и $\mathbb{S}^1_{y=\frac{1}{2}}$.

Автоморфизм \hat{A}_4 является меняющим ориентацию отображением периода 2. Его множество $\mathcal{B}_{\hat{A}_4}$ состоит из окружности $\mathbb{S}^1_{y=0}$.

Автоморфизм \hat{A}_5 является сохраняющим ориентацию отображением периода 4. Его множество $\mathcal{B}_{\hat{A}_5}$ состоит из неподвижных точек – $p_2(0,0)$ и $p_2\left(\frac{1}{2},\frac{1}{2}\right)$, и одной орбиты периода два – $\left\{p_2\left(0,\frac{1}{2}\right),p_2\left(\frac{1}{2},0\right)\right\}$.

Автоморфизм \hat{A}_6 является сохраняющим ориентацию отображением периода 3. Его множество $\mathcal{B}_{\hat{A}_6}$ состоит из неподвижных точек – $p_2(0,0),\,p_2\left(\frac{1}{3},\frac{1}{3}\right),\,p_2\left(\frac{2}{3},\frac{2}{3}\right)$.

Автоморфизм \hat{A}_7 является сохраняющим ориентацию отображением периода 6. Его множество $\mathcal{B}_{\hat{A}_7}$ состоит из неподвижной точки — $p_2(0,0)$, 1 орбиты периода 2 — $\left\{p_2\left(\frac{1}{3},\frac{1}{3}\right),p_2\left(\frac{2}{3},\frac{2}{3}\right)\right\}$ и 1 орбиты периода 3 — $\left\{p_2\left(\frac{1}{2},\frac{1}{2}\right),p_2\left(\frac{1}{2},0\right),p_2\left(0,\frac{1}{2}\right)\right\}$.

3. Построение семейств $M_{\varepsilon}, L_{\varepsilon}, K_{\varepsilon}$ и J_{ε}

Зададим функцию $h_{\varepsilon}(z) \colon \mathbb{R} \to \mathbb{R}$ по следующему правилу:

$$h_{\varepsilon}(z) := \begin{cases} k + \frac{1}{\pi} \arctan\left(\frac{1-\varepsilon}{1+\varepsilon}tg(\pi z)\right), \ z \in (k - \frac{1}{2}; k + \frac{1}{2}) \ (k \in \mathbb{Z}), \\ k + \frac{1}{2}, \ z = k + \frac{1}{2} \ (k \in \mathbb{Z}), \end{cases}$$

где $\varepsilon \in (-1,1)$.

При $\varepsilon=0$ функция $h_{\varepsilon}(z)$ имеет вид $h_{\varepsilon}(z)=z$. График функции $h_{\varepsilon}(z)$ при $\varepsilon\neq0$ изображён на Рис. 3.1.

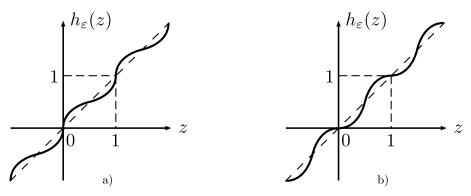


Рис. 3.1. График функции $h_{\varepsilon}(z)$: а) при $\varepsilon \in (-1,0)$, b) при $\varepsilon \in (0,1)$ **Fig 3.1.** Graph of the function $h_{\varepsilon}(z)$: а) for $\varepsilon \in (-1,0)$, b) for $\varepsilon \in (0,1)$

Представим окружность \mathbb{S}^1 как фактор-группу группы \mathbb{R} по группе $\mathbb{Z}: \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ с естественной проекцией $p_1: \mathbb{R} \to \mathbb{S}^1$ и обозначим через $[z]_{p_1}$ смежный класс группы \mathbb{R} по группе \mathbb{Z} , содержащий точку $z \in \mathbb{R}$.

Так как функция $h_{\varepsilon}(z)$ удовлетворяет условию $h_{\varepsilon}(z+k)=h_{\varepsilon}(z)+k$ $(k\in\mathbb{Z})$, то она индуцирует диффеоморфизм окружности $\varphi_{\varepsilon}\colon\mathbb{S}^1\to\mathbb{S}^1$, зависящий от параметра $\varepsilon\in(-1,1)$ и заданный формулой: $\varphi_{\varepsilon}([z]_{p_1})=[h_{\varepsilon}(z)]_{p_1}$.

При $\varepsilon=0$ отображение φ_{ε} является тождественным. При $\varepsilon\in(-1,0)$ ($\varepsilon\in(0,1)$) непосредственно проверяется, что неблуждающее множество диффеоморфизма φ_{ε} гиперболично и состоит из стока $\omega=p_1\left(\frac{1}{2}\right)$ ($\omega=p_1(0)$) и источника $\alpha=p_1(0)$ ($\alpha=p_1\left(\frac{1}{2}\right)$), и φ_{ε} – градиентно-подобный диффеоморфизм. Фазовый портрет φ_{ε} при $\varepsilon\neq0$ изображен на Рис. 3.2.

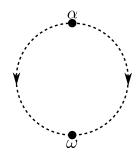


Рис. 3.2. Фазовый портрет φ_{ε} при $\varepsilon \neq 0$ **Fig 3.2.** Phase portrait of φ_{ε} for $\varepsilon \neq 0$

Определим диффеоморфизм двумерного тора M_{ε} как прямое произведение: $M_{\varepsilon}==\varphi_{\varepsilon}\times\varphi_{\varepsilon}.$

При $\varepsilon=0$ отображение M_{ε} является тождественным. При $\varepsilon\in(-1,0)$ ($\varepsilon\in(0,1)$) диффеоморфизм M_{ε} по построению является градиентно-подобным диффеоморфизмом, неблуждающее множество $\Omega_{M_{\varepsilon}}$ которого состоит из источника $\alpha=p_2(0,0)$ ($\alpha=p_2\left(\frac{1}{2},\frac{1}{2}\right)$), стока $\omega=p_2\left(\frac{1}{2},\frac{1}{2}\right)$ ($\omega=p_2(0,0)$) и сёдел: $\sigma_1=p_2\left(0,\frac{1}{2}\right)$ и $\sigma_2=p_2\left(\frac{1}{2},0\right)$.

Определим диффеоморфизм двумерного тора K_{ε} по формуле $K_{\varepsilon}=\hat{K}^{-1}\circ M_{\varepsilon}\circ \hat{K}$, где \hat{K} – алгебраический автоморфизм двумерного тора, заданный формулой $\hat{K}\left([(x,y)]_{p_2}\right)=[(x,x+y)]_{p_2}.$

При $\varepsilon=0$ отображение K_{ε} является тождественным. При $\varepsilon\in(-1,0)$ ($\varepsilon\in(0,1)$) диффеоморфизм K_{ε} по построению является градиентно-подобным диффеоморфизмом, неблуждающее множество $\Omega_{K_{\varepsilon}}$ которого состоит из источника $\alpha=p_2(0,0)$ ($\alpha=p_2\left(\frac{1}{2},0\right)$), стока $\omega=p_2\left(\frac{1}{2},0\right)$ ($\omega=p_2(0,0)$) и сёдел: $\sigma_1=p_2\left(0,\frac{1}{2}\right)$ и $\sigma_2=p_2\left(\frac{1}{2},\frac{1}{2}\right)$.

Построим диффеоморфизм двумерного тора J_{ε} следующим образом. Разобьём квадрат $[0,1]\times[0,1]$ на плоскости xOy на 6 многоугольников $\bar{\mathcal{F}}^0,\bar{\mathcal{F}}^1,\bar{\mathcal{F}}^2,\bar{\mathcal{F}}^3,\bar{\mathcal{F}}^4,\bar{\mathcal{F}}^5$ так, как показано на Рис. 3.3.

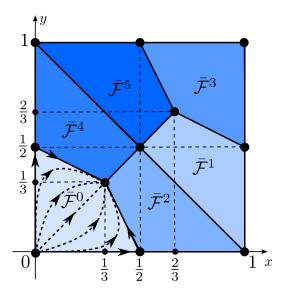


Рис. 3.3. Фазовый портрет потока, в который включается \bar{J}_{ε}^* **Fig 3.3.** Phase portrait of the flow, which embads \bar{J}_{ε}^*

Определим гомеоморфизм $\bar{J}^* \colon [0, \frac{1}{2}] \times [0, \frac{1}{2}] \to \bar{\mathcal{F}}^0$ по правилу:

$$\bar{J}^*(x,y) = \begin{cases} (\frac{2}{3}x, y - \frac{1}{3}x), & y \ge x, \\ (x - \frac{1}{3}y, \frac{2}{3}y), & y < x. \end{cases}$$

Положим $\bar{M}_{\varepsilon}(x,y)=(h_{\varepsilon}(x),h_{\varepsilon}(y))$. Диффеоморфизм \bar{M}_{ε} является накрывающим отображением для M_{ε} . Рассмотрим отображение $\bar{J}_{\varepsilon}^*\colon \bar{\mathcal{F}}^0\to \bar{\mathcal{F}}^0$, заданное формулой $\bar{J}_{\varepsilon}^*(x,y)=(\bar{J}^*\circ \bar{M}_{\varepsilon}\circ (\bar{J}^*)^{-1})(x,y)$. Непосредственно проверяется, что \bar{J}_{ε}^* является диффеоморфизмом. На Рис. 3.3 изображён фазовый портрет потока, в который включается \bar{J}_{ε}^* .

Обозначим через G_{p_2} группу скольжений накрытия p_2 двумерного тора, которая состоит из гомеоморфизмов вида $h_{a,b}(x,y) = (x+a,y+b)$ $(a,b\in\mathbb{Z})$. Определим отображение \bar{J}_{ε} : $\bigcup_{h_{a,b}\in G_{p_2}} h_{a,b}(\bar{\mathcal{F}}^0) \to \bigcup_{h_{a,b}\in G_{p_2}} h_{a,b}(\bar{\mathcal{F}}^0)$ по формуле $\bar{J}_{\varepsilon}(x,y) = (h_{a,b}\circ\bar{J}_{\varepsilon}^*\circ h_{a,b}^{-1})(x,y)$, где $(x,y)\in h_{a,b}(\bar{\mathcal{F}}^0)$.

Для точки $z\in p_2(\bar{\mathcal{F}}^0)$ определим отображение $J^*_\varepsilon(z)=p_2(\bar{J}_\varepsilon(p_2^{-1}(z))),$ где под $p_2^{-1}(z)$ подразумевается полный прообраз точки z.

Поскольку естественная проекция каждого из многоугольников $\bar{\mathcal{F}}^0, \bar{\mathcal{F}}^1, \bar{\mathcal{F}}^2, \bar{\mathcal{F}}^3, \bar{\mathcal{F}}^4, \bar{\mathcal{F}}^5$ на двумерный тор \mathbb{T}^2 является фундаментальной областью действия автоморфизма \hat{A}_7 , то можно определить диффеоморфизм $J_{\varepsilon} \colon \mathbb{T}^2 \to \mathbb{T}^2$ формулой:

$$J_{\varepsilon}(z) = \begin{cases} J_{\varepsilon}^*(z), \ z \in p_2(\mathcal{F}^0), \\ (\hat{A}_7^i \circ J_{\varepsilon}^* \circ \hat{A}_7^{-i})(z), \ z \in p_2(\bar{\mathcal{F}}^i)(i = \overline{1,5}). \end{cases}$$

При $\varepsilon=0$ отображение J_{ε} является тождественным. При $\varepsilon\in(-1,0)$ ($\varepsilon\in(0,1)$) диффеоморфизм J_{ε} по построению является градиентно-подобным диффеоморфизмом, неблуждающее множество $\Omega_{J_{\varepsilon}}$ которого состоит из источника $\alpha=p_2(0,0)$ (источников:

$$\alpha_1=p_2\left(\frac{1}{3},\frac{1}{3}\right)$$
 и $\alpha_2=p_2\left(\frac{2}{3},\frac{2}{3}\right)$), стоков: $\omega_1=p_2\left(\frac{1}{3},\frac{1}{3}\right)$ и $\omega_2=p_2\left(\frac{2}{3},\frac{2}{3}\right)$ (одного стока $\omega=p_2(0,0)$), и 3-х сёдел: $\sigma_1=p_2\left(\frac{1}{2},\frac{1}{2}\right)$, $\sigma_2=p_2\left(\frac{1}{2},0\right)$ и $\sigma_3=p_2\left(0,\frac{1}{2}\right)$.

4. Доказательство Теоремы 1.1

Основная идея доказательства основывается на том, что при $\varepsilon \in (-1,0) \cup (0,1)$ диффеоморфизмы семейств $\mathcal{M}_{\varepsilon,A_2(0)}$, $\mathcal{M}_{\varepsilon,A_3}$, $\mathcal{K}_{\varepsilon,A_4}$, $\mathcal{M}_{\varepsilon,A_5}$, $\mathcal{J}_{\varepsilon,A_6}$, $\mathcal{J}_{\varepsilon,A_7}$ представляют собой суперпозицию периодического гомеоморфизма двумерного тора и градиентно-подобного диффеоморфизма, такого что периодический гомеоморфизм отображает инвариантные относительно градиентно-подобного диффеоморфизма области в инвариантные относительно него же области.

Докажем утверждения теоремы для диффеоморфизма $\mathcal{M}_{\varepsilon,A_2(0)}$ при $\varepsilon\in(0,1).$ Утверждения теоремы для остальных диффеоморфизмов доказываются аналогично.

Множество $\Omega_{M_{\varepsilon}}$ состоит из точек $p_2(0,0),\ p_2\left(\frac{1}{2},\frac{1}{2}\right),\ p_2\left(0,\frac{1}{2}\right),\ p_2\left(\frac{1}{2},0\right)$ и совпадает с множеством неподвижных точек $\mathcal{B}_{\hat{A}_2(0)}$. Непосредственно проверяется, что все точки множества $\mathcal{B}_{\hat{A}_2(0)}$ являются неподвижными точками отображения $\mathcal{M}_{\varepsilon,A_2(0)}$. Нахождение собственных значений матрицы Якоби в этих точках показывает, что эти точки являются гиперболическим источником $\alpha=p_2(0,0)$, гиперболическим стоком $\omega=p_2\left(\frac{1}{2},\frac{1}{2}\right)$ и гиперболическими седлами: $\sigma_1=p_2\left(0,\frac{1}{2}\right),\ \sigma_2=p_2\left(\frac{1}{2},0\right)$.

Докажем, что компоненты связности инвариантных многообразий седловых неподвижных точек σ_1 и σ_2 диффеоморфизма $\mathcal{M}_{\varepsilon,A_2(0)}$ не пересекаются.

Обозначим через $\bar{A}_2(0)$ линейное отображение плоскости \mathbb{R}^2 , индуцированное матрицей $A_2(0)$, которое является накрывающим для автоморфизма $\hat{A}_2(0)$. Поскольку $(M_{\varepsilon} \circ \hat{A}_2(0))([(x_0,y_0)]_{p_2}) = [(\bar{M}_{\varepsilon} \circ \bar{A}_2(0))(x_0,y_0)]_{p_2} = [(-h_{\varepsilon}(x_0),-h_{\varepsilon}(y_0))]_{p_2} = [(\bar{A}_2(0)\circ \bar{M}_{\varepsilon})(x_0,y_0)]_{p_2} = (\hat{A}_2(0)\circ M_{\varepsilon})([(x_0,y_0)]_{p_2})$ для любых $(x_0,y_0)\in\mathbb{R}^2$, то отображения M_{ε} и $\hat{A}_2(0)$ коммутируют.

Поскольку отображение $\bar{A}_2(0)$ является изометрией плоскости \mathbb{R}^2 , то непосредственно проверяется, что $d(\hat{A}_2(0)([P]_{p_2}),\hat{A}_2(0)([P']_{p_2}))=d([P]_{p_2},[P']_{p_2})$ для любых $[P]_{p_2},[P']_{p_2}\in\mathbb{T}^2$, где d – метрика на двумерном торе. В силу коммутативности M_{ε} и $\hat{A}_2(0)$ выполняется $d(\mathcal{M}^n_{\varepsilon,A_2(0)}([P]_{p_2}),\mathcal{M}^n_{\varepsilon,A_2(0)}([P']_{p_2}))=d(\hat{A}^n_2(0)(M^n_{\varepsilon}([P]_{p_2}),\hat{A}^n_2(0)(M^n_{\varepsilon}([P']_{p_2})))=d(M^n_{\varepsilon}([P]_{p_2}),M^n_{\varepsilon}([P']_{p_2}))$ для любых $[P]_{p_2},[P']_{p_2}\in\mathbb{T}^2$. Отсюда следует, что инвариантные относительно диффеоморфизма $\mathcal{M}_{\varepsilon,A_2(0)}$ многообразия седловых неподвижных точек σ_1 и σ_2 совпадают с их инвариантными многообразиями относительно диффеоморфизма M_{ε} и, как следствие, не пересекаются.

Докажем, что множество $\mathbb{T}^2\setminus\Omega_{M_\varepsilon}$ состоит из блуждающих относительно $\mathcal{M}_{\varepsilon,A_2(0)}$ точек. Покроем множество $\mathbb{T}^2\setminus\Omega_{M_\varepsilon}$ открытыми множествами $p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right),$ $p_2\left(\left[0,1]\times\left(\frac{1}{2},1\right)\right),$ $p_2\left(\left(0,\frac{1}{2}\right)\times[0,1]\right)$ и $p_2\left(\left(\frac{1}{2},1\right)\times[0,1]\right)$. Докажем, что множество $p_2([0,1]\times(0,\frac{1}{2}))$ состоит из блуждающих точек. Доказательство для остальных множеств аналогично.

Рассмотрим точку P из множества $p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right)$. Поскольку $P\notin\Omega_{M_\varepsilon}$ и множество $p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right)$ является открытым на двумерном торе, то существует окрестность $U_P\subset p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right)$ такая, что $M^n_\varepsilon(U_P)\cap U_P=\emptyset$ для любого $n\in\mathbb{N}$. Поскольку $M_\varepsilon\circ\hat{A}_2(0)=\hat{A}_2(0)\circ M_\varepsilon$ и $\hat{A}_2(0)$ – автоморфизм периода 2, то для n=2k $(k\in\mathbb{N})$ выполняется $\mathcal{M}^n_{\varepsilon,A_2(0)}(U_P)=M^n_\varepsilon(U_P)$. Тогда $\mathcal{M}^n_{\varepsilon,A_2(0)}(U_P)\cap U_P=\emptyset$. Для n=2k-1 $(k\in\mathbb{N})$ выполняется $\mathcal{M}^n_{\varepsilon,A_2(0)}(U_P)=M^n_\varepsilon(\hat{A}_2(0)(U_P))$. Под действием $\hat{A}_2(0)$ окрестность U_P отображается в множество $p_2\left([-1,0]\times\left(-\frac{1}{2},0\right)\right)$ (см. Рис. 4.1), которое, в свою очередь, является инвариантным относительно действия M_ε и не пересекается с рассматриваемым множеством $p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right)$. Тогда $\mathcal{M}^n_{\varepsilon,A_2(0)}(U_P)\cap U_P=\emptyset$. Следовательно, множество $p_2\left([0,1]\times\left(0,\frac{1}{2}\right)\right)$ состоит из блуждающих относительно $\mathcal{M}_{\varepsilon,A_2(0)}$ точек.

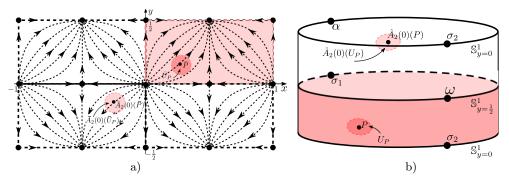


Рис. 4.1. Действие отображения $\hat{A}_2(0)$: а) действие $\bar{A}_2(0)$ на окрестность \bar{U}_P и точку \bar{P} , такие что $p_2(\bar{U}_P) = U_P$ и $p_2(\bar{P}) = P$; b)действие отображения $\hat{A}_2(0)$ на двумерном торе \mathbb{T}^2 , разрезанном по окружности $\mathbb{S}^1_{y=0}$

Fig 4.1. The action of map $\hat{A}_2(0)$: a) the action of $\bar{A}_2(0)$ on the neighborhood of \bar{U}_P and the point \bar{P} such that $p_2(\bar{U}_P) = U_P$ and $p_2(\bar{P}) = P$; b) the action of map $\hat{A}_2(0)$ on a two-dimensional torus \mathbb{T}^2 cut along a circle $\mathbb{S}^1_{y=0}$

Таким образом, неблуждающее множество $\Omega_{\mathcal{M}_{\varepsilon,A_2(0)}}$ диффеоморфизма $\mathcal{M}_{\varepsilon,A_2(0)}$ конечно и гиперболично и компоненты связности инвариантных многообразий седловых точек диффеоморфизма $\mathcal{M}_{\varepsilon,A_2(0)}$ не пересекаются. Следовательно, отображение $\mathcal{M}_{\varepsilon,A_2(0)}$ является градиентно-подобным диффеоморфизмом.

Благодарности. Публикация подготовлена в ходе исследования (№ 21-04-004) в рамках Программы «Научный фонд Национального исследовательского университета «Высшая школа экономики» (НИУ ВШЭ)» в 2021—2022 гг, кроме раздела 3, который выполнен при поддержке Лаборатории динамических систем и приложений НИУ ВШЭ, грант Минобрнауки России соглашение № 075-15-2019-1931.

Список литературы

- 1. Каток А. Б., Хасселблат Б. Введение в современную теорию динамических систем. М.: Факториал, 1999. 768 с.
- 2. Аносов Д. В. Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны // Тр. МИАН СССР. 1967. Т. 90. С. 3–210.
- 3. Batterson S. The dynamics of Morse-Smale diffeomorphisms on the torus // Transactions of the American Mathematical Society. 1979. Vol. 256. pp. 395–403.
- 4. Сидоров С. В., Чилина Е. Е. О негиперболических алгебраических автоморфизмах двумерного тора // Журнал СВМО. 2021. Т. 23, № 3. С. 295–307. DOI: https://doi.org/10.15507/2079-6900.23.202103.295–307
- 5. Bezdenezhykh A. N., Grines V. Z. Realization of gradient-like diffeomorphisms of two-dimensional manifolds // Sel. Math. Sov. 1992. Vol. 11, No. 1. pp. 19–23.
- 6. Nielsen J. Die struktur periodischer transformationen von flachen. Kobenhavn: Levin & Munksgaard, 1937. T. 15, No. 1. 78 p.

Поступила 30.03.2022; доработана после рецензирования 2.05.2022; принята κ публикации 25.05.2022

Авторы прочитали и одобрили окончательный вариант рукописи. Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

References

- 1. A. B. Katok, B. Hasselblat., [Introduction to the modern dynamical systems theory], Factorial Publ., Moscow, 1999 (In Russ.), 768 c.
- 2. D. V. Anosov, "[Geodesic flows on closed Riemannian manifolds of negative curvature]", *Trudy Mat. Inst. Steklov.*, **90** (1967), 3–210 (In Russ.).
- 3. S. Batterson, "The dynamics of Morse-Smale diffeomorphisms on the torus", Transactions of the American Mathematical Society, 256 (1979), 395–403.
- 4. S. V. Sidorov, E. E. Chilina, "On non-hyperbolic algebraic automorphisms of a two-dimensional torus", $Zhurnal\ SVMO$, **23**:3 (2021), 295–307 (In Russ.). DOI: https://doi.org/10.15507/2079-6900.23.202103.295-307
- A. N. Bezdenezhykh, V. Z. Grines, "Realization of gradient-like diffeomorphisms of two-dimensional manifolds", Sel. Math. Sov., 11:1 (1992), 19–23.
- 6. J. Nielsen, Die struktur periodischer transformationen von flachen, 15, Levin & Munksgaard, Kobenhavn, 1937, 78 c.

Submitted 30.03.2021; Revised 2.05.2022; Accepted 25.05.2022

The authors have read and approved the final manuscript. Conflict of interest: The authors declare no conflict of interest.

V. Z. Grines, D. I. Mints, E. E. Chilina. On perturbations of algebraic periodic automorphisms of a...