Математика

DOI 10.15507/2079-6900.19.201701.013-024

УДК 519.7

Спиральный хаос в моделях типа Лотки-Вольтерры © Ю. В. Баханова¹ А. О. Казаков² А. Г. Коротков³

Аннотация. В работе проведены исследования спирального хаоса в обобщенной системе Лотки-Вольтерры и системе Розенцвейга-Макартура, описывающей взаимодействие трех популяций. Показано, что в исследуемых системах спиральный хаос возникает по сценарию Шильникова. При изменении параметра в системе из устойчивого состояния равновесия рождается устойчивый предельный цикл и седло-фокусное состояние равновесия. Неустойчивое многообразие последнего при дальнейшем изменении параметра образует воронку, наматываясь на устойчивый цикл, и в некоторый момент касается одномерного устойчивого многообразия, образуя гомоклиническую траекторию к седлу-фокусу. Если при этом предельный цикл теряет устойчивость (например, в результате последовательности бифуркаций удвоения периода), а седловая величина седла-фокуса отрицательная, то на основе гомоклинической траектории возникает странный аттрактор.

Ключевые слова: спиральный хаос, система типа Лотки-Вольтерры, странный аттрактор.

1. Введение

Спиральный хаос, связанный с возникновением гомоклинической петли сепаратрисы состояния равновесия типа седло-фокус, является одним из основных примеров хаотической динамики в трехмерных системах. Теорема Л.П. Шильникова [1] утверждает, что в любой окрестности такой петли (при выполнении некоторого условия, т. н. условия Шильникова, на собственные значения седло-фокуса) существует нетривиальное гиперболическое подмножество, содержащее счетное множество седловых периодических траекторий. Таким образом, обнаружение гомоклинической петли седло-фокуса сразу говорит о сложности поведения траекторий в исследуемой системе.

Статьи Arneodo, Coullet и Tresser [2], [3], [4] были, по-видимому, первыми работами, в которых численно показано возникновение сложного поведения траекторий, связанного с существованием шильниковской петли. По всей видимости, именно эти работы привлекли внимание специалистов по динамическим системам к спиральному хаосу. После чего появилось большое количество работ, по исследованию конкретных систем из приложений самой разной природы, в которых авторы различными методами устанавливали наличие петли седло-фокуса и тем самым доказывали, что обнаруженные странные аттракторы относятся к спиральному типу. Таким образом спиральные аттракторы удалось обнаружить

¹ Баханова Юлия Викторовна, студент, кафедра ТУиДС, ИИТММ, НИУ ННГУ (603950, Н.Новгород, проспект Гагарина, 23); ORCID: 0000-0002-4067-1226, jul95-8@mail.ru

² Казаков Алексей Олегович, старший научный сотрудник, лаборатория топологических методов в динамике, НИУ ВШЭ (603155, Россия, г. Нижний Новгород, ул. Большая Печерская, д. 25/12); старший преподаватель, кафедра ТУиДС, ИИТММ, НИУ ННГУ (603950, Н.Новгород, проспект Гагарина, 23); кандидат физико-математических наук, ORCID: 0000-0003-0002-6553, kazakovdz@yandex.ru

³ Коротков Александр Геннадьевич, аспирант, кафедра ТУиДС, ИИТММ, НИУ ННГУ (603950, Н.Новгород, проспект Гагарина, 23); ORCID: 0000-0002-9256-1643, koral81@bk.ru

в радио-электронных устройствах, таких как цепь Чуа [5], генератор Анищенко-Астахова [6], в электромеханических системах [7] и т. д.

В настоящей работе проведено исследование сценариев возникновения спирального хаоса в двух моделях типа Лотки-Вольтерры вида

$$N_i = N_i F_i(N_1, N_2, N_3), \ i = 1, 2, 3,$$
(1.1)

описывающих взаимодействие трех видов особей N_1, N_2 и N_3 .

Первая модель, относящаяся к классу обобщенных моделей Лотки-Вольтерры, имеет вид

$$\dot{N}_i = N_i(\gamma_i - \sum_{j=1}^3 \nu_{ij}N_j), \ i = 1, 2, 3.$$
 (1.2)

Такая модель была исследована в работах [8, 2, 9]. В частности, в работе [8] было показано, что хаос в системах вида (1.2) может возникать только в случае, если хотя бы один из коэффициентов ν_{ij} отрицательный. Авторы работы [2] полагали, что хаос, возникающий в системе (1.2), может иметь спиральную («шильниковскую») природу и связывали его с возникновением гомоклинической траектории к седло-фокусу с одномерным неустойчивым многообразием. В настоящей работе мы показываем, что в системе (1.2) при изменении одного из параметров реализуется сценарий Шильникова [10], в результате которого возникает странный аттрактор, содержащий состояние равновесия типа седло-фокус с двумерным неустойчивым многообразием.

Вторая модель относится к классу систем Розенцвейга-Макартура [11]. С подробным исследованием таких систем можно ознакомиться в работах [12-14], в которых помимо анализа регулярных движений, также исследовалась возможность возникновения хаотической динамики. Что касается спирального хаоса, то он впервые был обнаружен в работе [13]. В настоящей работе мы проводим исследование хаотической динамики в системе Розенцвейга-Макартура, описывающей взаимодействие хищника и жертвы при условии, что часть популяции хищников заражена паразитами. Такая постановка задачи была исследована в работе [15], где было показано, что при изменении параметра в системе может наблюдаться цепочка бифуркаций: устойчивое состояние равновесия — предельный цикл — цикл удвоенного периода — ... — аттрактор типа Фейгенбаума. Мы показываем в настоящей работе, что развитие хаоса здесь на этом не заканчивается. При дальнейшем увеличении параметра возникают гомоклинические траектории к седло-фокусу, для которого выполнено условие Шильникова [1], что является критерием существования уже спирального хаоса.

В разделе 2 сформулирована теорема Шильникова о сложной структуре в окрестности петли седло-фокуса трехмерной системы, а также описан сценарий Шильникова [10], согласно которому в результате ряда бифуркаций из устойчивой точки может возникнуть странный аттрактор, содержащий петлю седло-фокуса с двумерным неустойчивым многобразием. В разделе 3 приведены результаты исследования спирального хаоса в обобщенной модели Лотки-Вольтерры, а в разделе 4 – аналогичные результаты для системы Розенцвейга-Макартура.

2. О спиральном хаосе

Рассмотрим динамическую систему, задаваемую трехмерным потоком и зависящую от параметра μ . Пусть при $\mu = \mu^*$ эта система имеет состояние равновесия O с собственными значениями $\lambda \pm i\omega$ и γ , где $\lambda < 0$, $\gamma > 0$ и $\omega \neq 0$. Такое состояние равновесия называется седло-фокусом типа (2.1); оно имеет двумерное устойчивое W^S и одномерное неустойчивое W^U инвариантные многообразия. Многообразие W^U разбивается точкой O на 2 связные компоненты-траектории, называемые неустойчивыми сепаратрисами. Предположим, что при $\mu = \mu^*$ одна из этих сепаратрис возвращается в седло-фокус при $t \to +\infty$, то есть образует гомоклиническую петлю (см. рис. 2.1а).

Рисунок 2.1

Гомоклинические траектории к седло-фокусу (2,1)

В 1965 г. Л.П. Шильников [1] доказал теорему о том, что если седловая величина седло-фокуса $\rho = \lambda + \gamma$ положительна, то в любой окрестности петли Γ существует нетривиальное гиперболическое подмножество, содержащее счетное множество седловых периодических траекторий, вследствие чего поведение системы вблизи Γ является весьма сложным.⁴

Замечание 1. При обращении времени седло-фокус типа (2.1) становится седлофокусом типа (1.2). Таким образом, сложная динамика вблизи петли седло-фокуса (1,2) будет иметь место в случае $\rho < 0$.

Фактически, теорема Шильникова из работы [1] дает простой критерий наличия хаоса для широкого класса систем, обладающих петлей седло-фокуса. Впоследствии для такого хаоса закрепилось название «шильниковский», а также «спиральный»⁵ хаос. В 1967 г. Шильников обобщил этот результат на случай четырехмерной системы с петлей седлофокуса, собственные значения которого равны $\lambda \pm i\omega_1$, $\gamma \pm i\omega_2$, где $\omega_i \neq 0$, $\lambda < 0$, $\gamma > 0$ [17], а в 1970 г. в работе [18] рассмотрел общий многомерный случай.

Заметим, однако, что при выполнении условий теоремы Шильникова возникновение сложной динамики, связанной с существованием счетного множества седловых периодических траекторий, не всегда ведет к возникновению странных аттракторов. Более того, сложная динамика может вообще не проявляться. Так, например, если система задана на некомпактном многообразии, траектории, запущенные в окрестности петли седло-фокуса,

⁴ В случае $\rho < 0$ динамика системы вблизи Γ тривиальна, а при разрушении петли седло-фокуса может родится только одно (устойчивое) периодическое движение.

⁵ Заметим, что впервые термин «спиральный хаос» был введен в 1976 году О. Е. Ресслером [16]. Автор, по-видимому, не знал о работах Шильникова и называл спиральным хаос, возникающий в сконструированной им модели. В работе [4] было показано, что спиральный хаос, обнаруженный в работе [16], возникает вблизи петли седло-фокуса. После чего этот термин прижился и так стали называть хаос, имеющий «шильниковскую» природу.

могут убегать на бесконечность. Также, такие траектории могут убегать на простые (регулярные) аттракторы, возникновение которых никак не связано с наличием петли. Для того, чтобы из петли седло-фокуса возник странный аттрактор, дополнительно необходимо наличие поглощающей области, внутри которой не должно быть простых (регулярных) аттракторов.

Отсюда можно сделать вывод, что в случае петли седло-фокуса типа (2,1) странный аттрактор может возникнуть лишь в случае наложения дополнительных условий на поведение второй неустойчивой сепаратрисы. Однако, в системах, обладающих центральной симметрией ($x \to -x, y \to -y, z \to -z$), возникновение одной петли седло-фокуса автоматически влечет за собой возникновение второй (см. рис. ??б). Отметим, что именно такие системы были исследованы в работах [19], [3], [5]. Далее странные аттракторы, возникающие на основе петли седло-фокуса (2, 1), будем называть спиральными аттракторами.

Что касается петли седло-фокуса типа (1,2), то в работе [10] было показано, что странные аттракторы здесь могут возникать в однопараметрических семействах без каких-либо дополнительных симметрий. Сценарий возникновения таких аттракторов описан ниже.

2.1. Сценарий Шильникова

Снова рассмотрим динамическую систему, задаваемую трехмерным потоком. Пусть при $\mu < \mu_1$ система обладает устойчивым состоянием равновесия O (см. рис. 2.2a), при $\mu = \mu_1$ состояние равновесия O претерпевает бифуркацию Андронова-Хопфа, в результате которой из O мягко рождается предельный цикл L, а само состояние равновесия становится седло-фокусом с двумерным неустойчивым многообразием. На рисунке 2.2b схематично изображен фазовый портрет вблизи точки О сразу после бифуркации Андронова-Хопфа ($\mu > \mu_1$). Далее предположим, что при $\mu = \mu_2 > \mu_1$ предельный цикл L претерпевает «дифференцируемую бифуркацию», в результате которой оба мультипликатора цикла L становятся комплексно сопряженными, после чего неустойчивое многообразие состояния равновесия О начинает наматываться на предельный цикл L, образуя «воронку» (см. рис. 2.2с). При дальнейшем увеличении параметра μ до $\mu = \mu_*$ одномерное устойчивое многообразие W^S седло-фокусного состояния равновесия может лечь на двумерное неустойчивое многообразие W^U (см. рис. ??d), в результате чего образуется гомоклиническая петля седло-фокуса (черная линия со стрелкой на рис. 2.2d). Согласно работе [1], если в этот момент седловая величина седло-фокуса отрицательна, то в системе возникает сложная структура (спиральный хаос), которая, однако, из-за наличия устойчивого предельного цикла L не проявляется. Далее, возможны 2 сценария, в результате которых внутри образовавшейся воронки не остается регулярного аттрактора:

- устойчивый цикл L претерпевает каскад бифуркаций удвоения периода;
- устойчивый цикл L претерпевает бифуркацию рождения тора, после чего аттрактором становится устойчивый двумерный тор T^2 , который, затем, разрушается согласно одному из сценариев Афраймовича-Шильникова [20].

В любом из случаев, образовавшийся согласно описанному сценарию аттрактор будем называть аттрактором Шильникова.

Замечание 2. Заметим, что в рамках предложенного сценария, предельный цикл L может начать бифурцировать до того, как образовалась петля седло-фокуса. Например, из этого цикла, в результате последовательности бифуркаций удвоения периода, может родиться аттрактор типа Фейгенбаума, и лишь после этого одна из устойчивых сепаратрис седло-фокуса O ложится на двумерное неустойчивое многообразие W^U , образуя петлю седло-фокуса, в результате чего аттрактор становится шильниковским.

Рисунок 2.2

Сценарий рождения аттрактора Шильникова

3. Аттрактор Шильникова в обобщенной модели Лотки-Вольтерры.

Рассмотрим обобщенную модель Лотки-Вольтерры вида⁶:

$$\begin{cases} \dot{x} = x(\alpha_{11}(1-x) + \alpha_{12}(1-y) + \alpha_{13}(1-z)) \\ \dot{y} = y(\alpha_{21}(1-x) + \alpha_{22}(1-y) + \alpha_{23}(1-z)) \\ \dot{z} = z(\alpha_{31}(1-x) + \alpha_{32}(1-y) + \alpha_{33}(1-z)) \end{cases}$$
(3.3)

Рисунок 3.1

Сценарий возникновения гомоклинической петли к седло-фокусному состоянию равновесия, описанный в работе [2]

В работе [2] предполагалось, что возникновение спирального хаоса в системе (3.3) происходит следующим образом. Пусть A – состояние равновесия типа седло-фокус (2,1), а B – устойчивое состояние равновесия (с координатами (1,1,1)). Предполагается, что

⁶ Эта система может быть получена из системы (1.2) заменой координат, в результате которой состояние равновесия, не лежащее в инвариантных плоскостях x = 0, y = 0 и z = 0, переходит в точку (1,1,1), а также переобозначения переменных.

при изменении параметра состояние равновесия B претерпевает бифуркацию Андронова-Хопфа, в результате которой рождается устойчивый предельный цикл, а одна из неустойчивых сепаратрис седло-фокуса A стремится на этот цикл или возникающий из него хаотический аттрактор (см. рис. 3.1а). При дальнейшем изменении параметра предполагается, что размер аттрактора растет быстрее, чем расстояние между состояниями равновесия A и B, и в какой-то момент возникает гомоклиническая траектория к седло-фокусу A (см. рис. 3.1b).

Однако, мы установили, что спиральный хаос возникает здесь не за счет петли седлофокуса (2,1), а по сценарию Шильникова на основе седло-фокуса *В* типа (1,2). Далее зафиксируем параметры следующим образом:

$$(\alpha_{ij}) = \begin{pmatrix} 0.486 & 0.5 & 0.1 \\ -0.5 & -0.1 & 0.1 \\ \alpha_{31} & 0.1 & 0.1 \end{pmatrix}$$
(3.4)

и проведем однопараметрический анализ, увеличивая параметр α_{31} .

Эволюция аттракторов в системе (3.3) при изменении параметра α_{31}

При $\alpha_{31} < 0.9343$ аттрактором в системе является устойчивое состояние равновесия B (см. рис. 3.2a). При $\alpha_{31} \approx 0.9343$ B претерпевает бифуркацию Андронова-Хопфа, в результате которой рождается устойчивый предельный цикл, а состояние равновесия становится седло-фокусом типа (1,2) (см. рис. 3.2b). При $\alpha_{31} \approx 1.1092$ мультипликаторы предельного цикла становится комплексно-сопряженными, в результате чего двумерное неустойчивое многообразие начинает наматываться на цикл, образуя воронку, а начиная с $\alpha_{31} \approx 1.2719$ предельный цикл претерпевает последовательность бифуркаций удвоения

Ю. В. Баханова, А. О. Казаков, А. Г. Коротков. Спиральный хаос в моделях типа...

периода (см. рис. 3.2с и 3.2d после первых двух бифуркаций удвоения периода), в результате чего возникает странный аттрактор типа Фейгенбаума (см. рис. 3.2e). При дальнейшем увеличении параметра α_{31} образуется гомоклиническая траектория к седло-фокусу B, возникает аттрактор Шильникова (см. рис. 3.2f).

Для поиска гомоклинической траектории к седло-фокусу, удобно предварительно проанализировать график зависимости расстояния от точек на аттракторе до седлофокусного состояния равновесия. Заметим, что траектории на аттракторе Фейгенбаума (см. рис. 3.2e) не посещают достаточно большую окрестность седло-фокуса B. Однако, при дальнейшем увеличении параметра α_{31} размер этой окрестности уменьшается, а при возникновении гомоклинической траектории расстояние от точек аттрактора до седло-фокусной точки стремится к нулю с ростом времени счета (см. рис. 3.3a). На рисунке 3.3b изображена гомоклиническая траектрия к седло-фокусу B, построенная при $\alpha_{31} \approx 1.4874$, отвечающем минимуму на графике 3.3a. Заметим, что в момент возникновения гомоклинической траектории седловая величина седло-фокуса B является отрицательной, а значит, применима теорема Шильникова.

Рисунок 3.3

(a) Зависимость расстояния от аттрактора до седло-фокуса B при изменении параметра α_{31} (b) Гомоклиническая траектория к седло-фокусу B типа (1,2)

4. Аттрактор Шильникова в модели Розенцвейга-Макартура.

В заключение рассмотрим модель Розенцвейга-Макартура, исследованную в работе [15] и описывающую взаимодействие трех популяций: жертв, хищников и хищников, зараженных паразитами:

$$\begin{cases} \dot{U} = U(1-U) - \frac{\alpha U(V+bW)}{1+b_1 U} \\ \dot{V} = \frac{mUV}{1+b_1 U} - \frac{\beta VW}{1+b_2 V} - d_1 V \\ \dot{W} = \frac{nbUW}{1+b_1 U} + \frac{\beta VW}{1+b_2 V} - d_2 W \end{cases}$$
(4.5)

Подробно с выводом модели и ее анализом можно ознакомиться в работе [15]. Здесь мы проведем однопараметрический численный анализ системы (4.5), варьируя параметр β , зафиксировав остальные параметры следующим образом:

 $\alpha = 5, b = 0.001, b_1 = 3.09077, m = 5, n = 0.05, b_2 = 2, d_1 = 0.4, d_2 = 0.01.$

Ю. В. Баханова, А. О. Казаков, А. Г. Коротков. Спиральный хаос в моделях типа...

При 0.0615 $\approx \beta_1 < \beta < \beta_2 \approx 0.0771$ аттрактором в системе является устойчивое состояние равновесия (см. рис. 4.1а). При $\beta \approx 0.0771$ это состояние равновесия претерпевает бифуркацию Андронова-Хопфа, в результате которой рождается устойчивый предельный цикл, а само состояние равновесия становится седло-фокусом (1,2) (см. рис. 4.1b). При $\beta \approx 0.0785$ мультипликаторы предельного цикла становятся комплексно-сопряженными, в результате чего двумерное неустойчивое многообразие седло-фокуса, наматываясь на цикл, образует воронку. Начиная с $\beta \approx 0.0801$ цикл претерпевает каскад бифуркаций удвоения (см. рис. 4.1с и 4.1d), в результате чего возникает странный аттрактор типа Фейгенбаума (см. рис. 4.1е). При дальнейшем увеличении параметра β образуется гомоклиническая траектория к седло-фокусу (1,2), возникает аттрактор Шильникова (см. рис. 4.1f).

Эволюция аттракторов в системе (4.5) при изменении параметра β

На рисунке 4.2 изображен график зависимости расстояния от аттрактора до седлофокуса. При $\beta \approx 0.2067$ минимум на графике практически достигает нуля, возникает гомоклиническая траектория. При этом седловая величина седло-фокуса отрицательная.

Рисунок 4.1

Зависимость расстояния от аттрактора до седло-фокуса типа (1,2) при изменении параметра β

Благодарности. Авторы благодарят С.В. Гонченко, Г.В. Осипова, Е.А. Гринеса за ценные замечания. Работа над разделом 2 выполнена при поддержке гранта РНФ 17-11-01041. Работа над разделом 3 выполнена при поддержке гранта РНФ 14-12-00811. Работа над разделом 4 выполнена при поддержке ЦФИ НИУ ВШЭ (проект 90 в 2017 году). Также А.О. Казаков частично поддержан фондом Династия.

Список литературы

- 1. Л. П. Шильников, "Об одном случае существования счетного множества периодических движений", ДАН СССР, **160(3)** (1965), 558-561.
- A. Arneodo, P. Coullet, C. Tresser, "Occurence of strange attractors in three-dimensional Volterra equations", *Physics Letters A.*, **79(4)** (1980), 259-263.
- A. Arneodo, P. Coullet, C. Tresser, "Possible new strange attractors with spiral structure", Commun. Math. Phys., 79 (1981), 573-579.
- A. Arneodo, P. Coullet, C. Tresser, "Oscillators with chaotic behavior: an illustration of a theorem by Shilńikov", *Journal of Statistical Physics*, 27(1) (1982), 171-182.
- L. O. Chua, M. Komuro, T. Matsumoto, "The double scroll family", *Circuits and Systems*, *IEEE Transactions on.*, **33(11)** (1986), 1072-1118.

- 6. В. С. Анищенко, "Сложные колебания в простых системах.", Circuits and Systems, IEEE Transactions on., 1990.
- 7. M. T. M. Koper, P. Gaspard, J. H. Sluyters, "Mixed-mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium / thiocyanate electrochemical oscillator", *The Journal of chemical physics*, **97(11)** (1992), 8250-8260.
- 8. R. M. May, W. J. Leonard, "Nonlinear aspects of competition between three species", *SIAM journal on applied mathematics*, **29** (2) (1975), 243–253.
- J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, J. C. Sprott, "Chaos in lowdimensional Lotka-Volterra models of competition", *Nonlinearity*, 19 (2006), 2391–2404.
- 10. Л. П. Шильников, "Теория бифуркаций и турбулентность", Методы качественной теории дифференциальных уравнений: Межвуз. сб./Е. А. Леонтович (отв. ред.) и др. Горький: ГГУ., 1986, 150-163.
- 11. M. L. Rosenzweig, R. H. Macarthur, "Graphical representation and stability conditions of predator-prey interactions", *American Naturalist*, **97(895)** (1963), 209-223.
- B. Deng, "Food chain chaos due to junction-fold point", Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(3) (2001), 514-525.
- B. Deng, G. Hines, "Food chain chaos due to Shilnikov's orbit", *Chaos*, **12(3)** (2002), 533-538.
- 14. B. Deng, "Food chain chaos with canard explosion", *Chaos: An Interdisciplinary Journal* of Nonlinear Science, **14(4)** (2004), 1083-1092.
- Krishna pada Das, "A study of chaotic dynamics and its possible control in a predatorprey model with disease in the predator", *Journal of Dynamical and Control Systems*, 21(4) (2002), 605-624.
- 16. O. E. Rössler, "An equation for continuous chaos", *Physics Letters A.*, **57(5)** (1976), 397-398.
- 17. Л. П. Шильников, "О существовании счетного множества периодических движений в четырехмерном пространстве в расширенной окрестности седло-фокуса", *ДАН СССР*, **172(2)** (1967), 298-301.
- 18. Л. П. Шильников, "К вопросу о структуре расширенной окрестности грубого состояния равновесия типа седло-фокус", *Математический сборник*, **81(1)** (1970), 92-103.
- P. Coullet, C. Tresser, A. Arneodo, "Transition to stochasticity for a class of forced oscillators", *Physics letters A.*, 72(4-5) (1979), 268-270.
- 20. В. С. Афраймович, Л. П. Шильников, "Инвариантные двумерные торы, их разрушение и стохастичность", Методы качественной теории дифференциальных уравнений. Горький., 1983, 3-26.

Поступила 17.03.2017

MSC2010 34C23, 34D45, 65P20

Spiral chaos in Lotka-Volterra like models © Yu. V. Bakhanova⁷ A. O. Kazakov⁸ A. G. Korotkov⁹

Abstract. In this work investigations are made of spiral chaos in generalized Lotka-Volterra systems and Rosenzweig-MacArthur systems that describe the interaction of three species. It is shown that in systems under study the spiral chaos appears in agreement with Shilnikov's scenario. When changing a parameter in the system a stable limiting cycle and a saddle-focus equilibrium are born from stable equilibrium. Then the unstable invariant manifold of saddle-focus winds on the stable limit cycle and forms a whirlpool. For some parameter's value the unstable invariant manifold touches one-dimensional stable invariant manifold and forms homoclinic trajectory to saddle-focus. If in this case the limiting cycle loses stability (for example, as result of sequence of period-doubling bifurcations) and saddle value of the saddle-focus is negative then strange attractor appears on base of homoclinic trajectory.

Key Words: spiral chaos, Lotka-Volterra-like systems, strange attractor.

REFERENCES

- L. P. Shilnikov, "A case of the existence of a countable number of periodic motions(Point mapping proof of existence theorem showing neighborhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions)", *Soviet Mathematics.*, 6 (1965), 163-166.
- A. Arneodo, P. Coullet, C. Tresser, "Occurence of strange attractors in three-dimensional Volterra equations", *Physics Letters A.*, **79(4)** (1980), 259-263.
- A. Arneodo, P. Coullet, C. Tresser, "Possible new strange attractors with spiral structure", Commun. Math. Phys., 79 (1981), 573-579.
- A. Arneodo, P. Coullet, C. Tresser, "Oscillators with chaotic behavior: an illustration of a theorem by Shilńikov", *Journal of Statistical Physics*, 27(1) (1982), 171-182.
- L. O. Chua, M. Komuro, T. Matsumoto, "The double scroll family", *Circuits and Systems*, *IEEE Transactions on.*, **33(11)** (1986), 1072-1118.
- 6. V. S. Anishchenko, "Complex oscillations in simple systems.", 1990.
- 7. M. T. M. Koper, P. Gaspard, J. H. Sluyters, "Mixed-mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium / thiocyanate electrochemical oscillator", *The Journal of chemical physics*, **97(11)** (1992), 8250-8260.
- 8. R. M. May, W. J Leonard., "Nonlinear aspects of competition between three species", *SIAM journal on applied mathematics*, **29(2)** (1975), 243–253.

Yu. V. Bakhanova, A. O. Kazakov, A. G. Korotkov. Spiral chaos in Lotka-Volterra...

⁷ Yulia V. Bakhanova, student, IITMM, UNN (23 Prospekt Gagarina (Gagarin Avenue) BLDG 2, 2nd floor, 603950 Nizhni Novgorod, Russia); ORCID: 0000-0002-4067-1226, jul95-8@mail.ru

⁸ Alexey O. Kazakov, senior researcher, Laboratory of topological methods in dynamics, National Research University Higher School of Economics (25/12 Bolshaja Pecherskaja Str., Nizhni Novgorod 603155, Russia); Lecturer, IITMM, UNN (23 Prospekt Gagarina (Gagarin Avenue) BLDG 2, 2nd floor, 603950 Nizhni Novgorod, Russia); PhD, ORCID: 0000-0003-0002-6553, kazakovdz@yandex.ru

⁹ Alexander G. Korotkov, postgraduate, IITMM, UNN (23 Prospekt Gagarina (Gagarin Avenue) BLDG 2, 2nd floor, 603950 Nizhni Novgorod, Russia); ORCID: 0000-0003-0002-6553, koral81@bk.ru

- J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel, J. C. Sprott, "Chaos in lowdimensional Lotka-Volterra models of competition", *Nonlinearity*, 19 (2006), 2391–2404.
- L. P. Shilnikov, "The theory of bifurcations and turbulence", Selecta Math. Sovietica, 10 (1991), 43-53.
- 11. M. L. Rosenzweig, R. H. Macarthur, "Graphical representation and stability conditions of predator-prey interactions", *American Naturalist*, **97(895)** (1963), 209-223.
- B. Deng, "Food chain chaos due to junction-fold point", Chaos: An Interdisciplinary Journal of Nonlinear Science, 11(3) (2001), 514-525.
- 13. B. Deng, G. Hines, "Food chain chaos due to Shilnikov's orbit", *Chaos*, **12(3)** (2002), 533-538.
- 14. B. Deng, "Food chain chaos with canard explosion", *Chaos: An Interdisciplinary Journal* of Nonlinear Science, **14(4)** (2004), 1083-1092.
- Krishna pada Das, "A study of chaotic dynamics and its possible control in a predatorprey model with disease in the predator", *Journal of Dynamical and Control Systems*, 21(4) (2002), 605-624.
- 16. O. E. Rössler, "An equation for continuous chaos", *Physics Letters A.*, **57(5)** (1976), 397-398.
- L. P. Shilnikov, "The existence of a denumerable set of periodic motions in fourdimensional space in an extended neighborhood of a saddle-focus", *Soviet Math. Dokl.*, 8(1) (1967), 54-58.
- L. P. Shilnikov, "A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type", *Mathematics of the* USSR-Sbornik, 10(1) (1970), 91.
- P. Coullet, C. Tresser, A. Arneodo, "Transition to stochasticity for a class of forced oscillators", *Physics letters A.*, 72(4-5) (1979), 268-270.
- 20. V. S. Afraimovich, L. P. Shilnikov, "On invariant two-dimensional tori, their disintegration and stochasticity", *Methods of the qualitative theory of differential equations, Gos. Univ. Gorkij, Gor'kov.*, 1983.

Submitted 17.03.2017