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Opuzunasvhas cmamos
VIIK 519.622.2

I/ICCJIG,HOBELHI/IG YNCJIEHHBIX ME€TO/J0B pelieHms
HeJIMHEIHOM cucTeMbI CIIpOCa M IIpeajIozKeHund
9HEepreTnIeCKmux pecypcoB

B. 4. Bol, C. Hofxiﬂr,naMl’2, A.N. ,Z[per‘nal, . H. CI/I,ZLOpOBl

1 . . o o

Hprymekut nayuonaavrod uccaedosamenveruli mexnuveckul yrusepcumem (Hp-
kymex, Poccus)

Qﬂncmumym mamemamury Axademuu nayx Xonanyu (Gorconuocoy, Kumaii)

Awnusorauusi. B manHOM uccieioBaHUM PeaM30BAHBI U ONEHEHbI PA3JIMYHBIE YUCJIEHHBIE
MeTOJIbI JJIsl PEIIeHs] HeJUHEHHON cucreMbl TuddepeHIualbHbIX YPABHEHU, MOIEIUpY-
IoIell JUHAMUKY CIPOCa W IIPEJIOXKEHUSI SHEPIeTUIECKUX pecypcoB. VcIosb30BaHBI Kak
omuomarosbie Meroasl (psz Teitmopa, meron Pyrre—KyTTbl), TAK 1 MHOTOIIATOBBIE METOJIBI
(Amamca—Barmdopra, MeTon nporaosa—kKoppekuun Anamca). IIoMuMO CTaHIZAPTHBIX METO-
JIOB 9€TBEPTOrO IMOPsiJIKA, [IPUMEHSIINCh TaKXKe MEeTOJbI 00jiee BBICOKOIO IOPSIKA, TaKue
kak merton Pyrre-KyrTer nmaroro nmopsaka n meron psga Teitopa mecroro nmopsiaka. Kpo-
Me TOro, HApsAy C YUCICHHBIMM MeTOJaMu ¢ (DUKCUPOBAHHBIM IIIArOM, ObLIN PEaIn30BaHbI
¥ OIIEHEHBI METObI C aIalTUBHBIM IIArOM, BKJIFO4Yas siBHBIM MeTon Pynre—KyrTer nmopsiaka
5(4) (RK45), siubiit Meron Pyrre-Kyrrsr nopsiaka 8(5,3) (DOP853), nesiBublil MeToxn Pyw-
re-Kyrrer cemeiicra Radau ITA nopsinka 5 (Radau), HesBHbII MeTos Ha OoCHOBe (hOPMYII
o6parnoro quddepennuposanust (BDF), a takske kom6uauposansslit merozn Anamca/BDF ¢
asromarmaeckum nepexsodennem (LSODA). Tlomyvennble pe3ysibTaThl MOKA3BIBAIOT, IYTO B
PACCMOTPEHHBIX CJLy4asiX OHOIIArOBbIe METObI ObLin 60s1ee 3(pDEKTUBHBI, €M MHOI'OIIATO-
Bble, [P OTCJIE’KUBAHUY OBICTPBIX U3MEHEHUI CHCTEMBI, TOT[a KaK MHOTOIIATOBbIE METOIBI
TpebOBaM MEHbIIE BPEMEHU HA BBIUMCICHWS. JHMCJIEHHBIE METOJbI C AJAIITUBHBIM IIArOM
[IPOJIEMOHCTPUPOBAJIA KaK I'MOKOCTb, TaK U YCTOWYMBOCTD. 1loCpescTBOM OLIEHKHU U aHAJIU-
3a YHCJIEHHBIX PEIIeHU, IOy 9€HHbIX PA3JIMYHBIMA METOLaMU, UCCIIELYIOTCS TMHAMUYIECKIE
XapaAKTEPUCTUKU U TIOBEJEHUE CUCTEMBbI.

KuarogyeBbie ciioBa: cucreMa CIpoca U MpeJIoyKeHUusl SHepruu, Meto] PyHre—KyTToI, ps
Teitnopa, meron Anamca—Barnidopra, meros npornosnpoBanus—koppekimu Anamca, RK45,
DOP853, Radau, BDF, LSODA
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1. Introduction

Numerical methods constitute a major branch of mathematical research, aimed at solving
problems where finding explicit analytical solutions is challenging. One such class of problems
includes nonlinear differential equations and their systems. In mathematics, differential
equations and their systems, particularly initial value problems, have been extensively
studied due to their role as powerful tools for modeling real-world problems [1-2]. In
the context of the growing urgency to use energy resources efficiently and sustainably,
forecasting and stabilizing energy resources supply and demand play a crucial role. Mei
Sun et al. proposed a nonlinear system of differential equations to describe the energy
resources supply-demand system [3—4], which was formulated based on a real-world problem
to ensure the stability of energy resources supply and demand between the eastern and
western regions of China. Studies have shown that this system exhibits chaotic and highly
nonlinear behavior [5], making it extremely complex to obtain exact solutions. In this case,
employing numerical methods to obtain approximate solutions presents a more practical and
feasible approach.

Numerical methods constitute a broad research field encompassing various techniques
that have been extensively developed and studied, each demonstrating suitability and
effectiveness for specific types of problems [6]. However, for the nonlinear energy resources
supply-demand system, most existing studies primarily focus on stabilizing the chaotic
behavior of the system [7-8], while in-depth investigations into numerical methods for
solving the system remain limited. Recently, a study by Vo et al. proposed using physics-
informed neural networks to solve this system. Although this approach shows great potential,
it has certain drawbacks, such as requiring significant computational power from modern
computing systems and being time-consuming due to the need for model training [9].

In this paper, we conduct an in-depth study by implementing numerical methods to solve
the nonlinear energy resources supply-demand system. The numerical methods employed
include representative one-step methods such as the Taylor series method and the Runge-
Kutta method. Multi-step methods such as Adams-Bashforth, Adams-Moulton, and the
Adams-Predictor-Corrector method [10] are also considered. Additionally, adaptive step-
size methods such as: RK45 [11-12], DOP853 [13], Radau [14], BDF [15], LSODA [16]
are implemented. Notably, for fixed-step methods, we deploy higher-order approaches such
as RK5 and the sixth-order Taylor series method. The numerical solutions obtained from
these higher-order methods are then used to assess the accuracy of lower-order fourth-order
methods. Beyond solving the system, this study also evaluates and compares numerical
methods based on criteria such as accuracy, convergence speed, computational efficiency, and
stability, aiming to identify the most suitable and effective methods for the given system.
All numerical methods are implemented in Python [17], For adaptive step-size methods, we
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utilize numerical solvers from the SciPy library [18], which is integrated into the Python
programming language.

Main contributions of the Study: Implement various numerical methods for solving the
nonlinear energy resources supply-demand system. Implement high-order numerical methods
to solve the nonlinear energy resources supply-demand system. Analyze, evaluate, and
compare the effectiveness of numerical methods for the nonlinear differential equation system
describing the energy resources supply-demand problem. Analyze and explore the behavioral
characteristics of the system through numerical solutions.

The paper is structured into five main sections: Section 1. provides a general introduction.
Section 2. describes the nonlinear differential equation system for the energy resources
supply-demand problem. Section 3. presents the numerical methods used in this study to
solve the energy resources supply-demand system. Section 4. proposes several approaches for
analyzing and evaluating the effectiveness of the implemented numerical methods. Finally,
Section 5. presents the main results of the study.

2. System description

To model the distribution of energy resources supply and demand between different
regions C and D, Mei et al. formulated three-dimensional and four-dimensional nonlinear
differential equation systems. In this study, we focus on numerically solving the four-
dimensional energy resources supply-demand system. The mathematical formulation of this
system is given below [4]:

21 (1) = a1 (£)(1 — ) — ag(wa(t) + 23(t)) — dswa(t),

) = —z122(t) — 2023(t) + 2321 (1) [N — (21(t) — 23(2))],
) )

) )

(2.1)

The initial conditions of the system (2.1) are given by z;(ty) = b;, and [9] z;'(¢) denotes
the derivative of the function x;(t) with respect to the variable t, where ¢ € {1,2,3,4}.
2;(t) are the unknown functions to be determined, where the energy demand in region D is
represented by x1(t), the energy supply from region C to region D is represented by xo(t),
the imported energy resources into region D are represented by z3(t), and the renewable
energy resources in region D are represented by x4(t). With the constants of the system
satisfying the following conditions a;,d;, 2;,s;, N, M > 0 and N < M. The system (2.1) is
in a chaotic state with the coefficients a; = 0.09, as = 0.15, z; = 0.06, 25 = 0.082, z3 = 0.07,
$1=0.2,50=0.5,83=04, M =18 N =1,d; =0.1, dy = 0.06, d3 = 0.08, and the initial
conditions z1(0) = 0.82, 22(0) = 0.29, z5(0) = 0.48, 24(0) = 0.1 [4-5].

3. Numerical Methods

To facilitate the presentation of numerical methods, the differential equation system (2.1)
is rewritten as follows:

Let fi1, f2, f3, fa denote the functions representing the right-hand side of the differential
equation system (2.1), and let by, by, b3, by denote the initial values corresponding to the
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four components of the system, given by:

fl(t,xl, $2,$3,CL‘4) = alxl(t) (1 — .’L‘}w(t)) — (lQ(!EQ(f) + 1’3(t)) — d3{,134(t)7

fa(t,x1, o, 23, 4) = —2122(t) — 20w3(t) + 2321 () [N — (21(t) — z5(¢))],
f3(t,$1,$2,l‘3, 3;‘4) = 8133‘3(?5)(82331(25) — 83),
Ja(t, w1, 22,23, 24) = d121 (1) — dawa(l),

we can rewrite the general form of the system as follows:
x' =f(t,x) , x(tg) = b.
where x, f, and b are vectors defined as follows:

X = [$17$271‘37$4]T7 f= [f13f27f3af4]T’ b= [b15b2a63ab4]T'

In this study, we define x(¢;) as the exact solutions of the system at time ¢; and denote x;
as the approximate solutions of the system at time ¢;, obtained using numerical methods.

3.1. Single step methods

In the field of numerical methods, a class of techniques for solving differential equation
systems in which the solution at any time ¢;;1 is approximated solely based on the solution
at the previous time step ¢; is referred to as single-step numerical methods [10].

3.1.1. Taylor Series Method

Taylor’s method is a powerful explicit single-step numerical method [19-20], Its
foundation is based on the Taylor series expansion, a fundamental concept in function
approximation theory. According to this principle, the value of a function at any given point
can be approximated using a nearby known point, represented by a polynomial and its
higher-order derivatives, as given by the Taylor series. In the Taylor numerical method, the
solution at time ;1 is approximated using its value at ¢; through the following formula [10]:

2 3 p
Xip1 = X; + hxy + %Xi” + %xi’” + ..+ %Xi(p), (3.1)
where:
h: is the step size.
p: is the order of the derivative.
xl(.k): the values of the k-th order derivatives of the solution functions at time ¢;.

To implement this numerical method, one of the crucial aspects is determining the
expressions for the higher-order derivatives of the system. This task is not straightforward.
In this study, we have determined the expressions for computing the derivatives up to the
sixth order for the solution functions of the differential equation system (2.1). The detailed
expressions are presented below:

Ezxpressions for the first-order derivatives of the solution functions:

A0 = a1 (00— ) aa(aa(t) + 2a(0)) — diaa)

V.T. Vo, S. Noeiaghdam, A.I. Dreglea, D. N. Sidorov. A Study of Numerical Methods for Solving the. ..



148 Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2025. Vol. 27, No. 2.

25D (t) = —z12a(t) — z025(t) + 23z (8)[N — (21(t) — 23(2))],
xgl)(t) = s1x3(t)(s221(t) — s3),
() = dya (t) — daa(t).

Ezxpressions for the second-order derivatives of the solution functions:

mgz) (t) = alxgl)(t) [1 - ij\}(t)]

—az [a§7(0) + 2§ (1)] — dsalV 1),
2 (0) = 2 (0) = 20l (1) + 201 (1) [287(8) = 21" (0)] + 20l (O IV = (1) + 2 (1))
x:(f)(t) = slszxg(t)xgl)(t) + slxgl)(t) [saw1(t) — s3],
2P () = dyat) (1) — daai) (1),
Ezxpressions for the third-order derivatives of the solution functions:

2.’171 (t)

i } —a {xéz) (t) + acgf) (t)} — d3.’1)£12)(t) - 2a1{]\4,

2D(1) = ana® (1) [1 -

acé?’) (t) = —zlxg)(t) - Zgl‘éz)( ) + 22325 1) { )}
+z521(t) [0 (1) = 217 (8)] + 20017 (8) [N = 21(8) + 25(0)]
2 () = s150w3(8) 2> (1) + 2518020 ()25 (8) + 5125 () [sa1 () — s3],
() = i (1) — o ().
Ezxpressions for the fourth-order derivatives of the solution functions:

(1) (2)
2 p
#7(t) = aral® (1) [1 - x;,(ﬂ —a [59(0) + 20(0)] - dyald(p) - DAL,

w$0() = =228 () — 20087 (1) + 3202 (1) [0 (1) - 2V (1)
+ 32520 (1) 287 (1) = 2l (0)] + zs21(0) [+ (1) =2l 1)
+ 232 () [NV = 21 (8) + a3(8)]
257 (t) = sisows ()2t (1) +Bsispal ) ()25 (1) +3s1s0al? ()28 (1) + 1257 (8) [s221 () — s3],

2V (t) = diz®P (1) — dozP (1)

Ezxpressions for the fifth-order derivatives of the solution functions:

o) =an (1= 2H0) a0 - (0 + o)) - a0

8a1x(1)( )xgg)(t) Ga [mf) (t)} i

M M ’
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(1) = =128 (1) — 208" (1) + 4z [+ (1) = 21V (1) P (1)
+ 625|257 (1) — 27 (1) 2P (1) + 42 [257(0) 2V (0] o (1)
b2 [0 = 2P (0] an(0) + 22 [V~ (0) + wa(0)] P 1),
2P (t) = s1s0a3(0)al? (1) + 4515028 (0)2lP (1) + 651502 ()2 (1)
+ 48182£E(13)(t)1':(31)(t) + 51 [s221 — s3] xgl) (1),
2P () = dia{? () — dazi? (1),

Ezxpressions for the sixth-order derivatives of the solution functions:

o0 =an |1 2O 00) = 02 [o70) 4 40 0)] - a0

M
1 4 2 3
Coa 05 2 (1) (1)
M YoM

20 () = =22l () = 290 (1) + 52 [250 () — 2V ()] 17 (1)
+ 1023 [xz(f)(t) — xgz)(t)} xgg) (t)+10z3 {xég) (t) — scgg) (t)} a:§2) (t)
+525 [287(6) = 2{0(0)] 21V (1) + 25 287 ) — 27 )] @1 (1)
+ 23 [N — @1 () + 2s(8)] 21 (1),
2O (t) = s15023()2$” (1) + 5s1502( (D)2l (1) + 105150212 ()2 (1)
+ 1Os152x(13) (t)xg)(t) + 581829954)(1?)1:(31)@) + 51 [s221(t) — s3] x§5) (t),
20 () = dya® (t) — daz (1),

The error of the Taylor series numerical method is determined based on the order of the
derivative. Specifically, a fourth-order Taylor series requires the use of derivative values up
to the fourth order. In the theory of numerical methods, this method has a global error of
O(h*) and a local error of O(h%). Similarly, a sixth-order Taylor series method has a global
error of O(h%) and a local error of O(hT) [6, 10, 13].

3.1.2. Runge-Kutta Fourth Order Method

Among single-step numerical methods, the Runge-Kutta method is one of the most
widely used approaches [17], particularly for solving scientific and engineering problems,
which are often represented by nonlinear differential equation systems. Unlike the Taylor
method, which requires computing high-order derivatives to approximate function values at
a given point, the Runge-Kutta method approximates the solution using K intermediate
stages [19]. The Runge-Kutta method includes both explicit and implicit forms [13-14].
In this study, we employ two commonly used Runge-Kutta formulas to solve the energy
supply-demand system (2.1): the fourth-order and fifth-order Runge-Kutta methods. The
fourth-order formula is presented below [10]:

1
Xi+1 = X5 + 6 (k1 + 21{2 + 2k3 + k4) . (32)
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Where:
k1 = hf(ti,Xi),
ko = hf (t; + &,x; + k1),
ks = hf (t; + &,x; + ko),
k4 = hf (tz + h,Xi + k3)

The fourth-order formula utilizes four intermediate stages, k1 to k4, as defined above.
This method has a global error of O(h*) and a local error of O(h®) [6, 10, 13].

3.1.3. Runge-Kutta Fifth Order Method

In this study, we implement the explicit fifth-order Runge-Kutta numerical method
with high accuracy. This formula, proposed by Butcher, employs six intermediate stages
to approximate the solutions of system (2.1) and is described as follows [20]:

Where
kl - f(thxz)a
k2:f(tl+1h X; + lklh)
kng(tl-i-ih X; + 1k1h+ leh)
k4 = (tl + %h X; — 1k2h + kgh)
(

ks =f (t; + 3h, xit 1 Skih+ fkah),
ke =1 (t; + h,x; — k1h+ 2k2h+ 2ksh — Lkyeh + Eksh).

This method has a global error of O(h%) and a local error of O(h°) [6, 10, 13].

3.2. Multi step methods

Unlike single-step numerical methods, multi-step numerical methods are designed to
determine approximate solutions of a differential equation system at time ¢;;1 not only
based on the solution at ¢; but also by utilizing information from the solutions of the system
at multiple previous time steps [6]. These methods include explicit, implicit, and a combined
form of both, known as the predictor-corrector method. In this study, we implement one of
the representative formulas of this approach, the Adams family of formulas, to solve system
(2.1) [10].

Similar to single-step numerical methods, the accuracy of a multi-step numerical method
is evaluated based on its order. A method of order p has a local accuracy of O(hP*!) and a
global accuracy of O(hP) [6, 10, 19].

3.2.1. Adams-Bashforth Methods

The Adams-Bashforth method is a typical explicit multi-step method [6, 13] used
for solving nonlinear differential equation systems. In this study, we implement the
fourth-order Adams-Bashforth formula to solve the energy supply-demand system. In this
approach, the value of the solution function at any given time is approximated based
on the four most recently computed solution values. Given a dataset containing j values
(ti,£) (tiz1,fi1), .oy (tijg1, fi_j11), the fourth-order Adams-Bashforth formula (j = 4) is
presented below [10]:
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h
Xi+1 = X; + ﬂ [55fl —59f;,_1 + 37f;,_5 — 9f1’_3] . (34)

To implement this method, the first step requires knowing the four initial solution values.
Therefore, to determine the solution values from x; to x4, a single -step method must be
used. In this study, these initial values are obtained using the RK4 method.

3.2.2. Adams-Moulton Methods

The Adams-Moulton methods are an implicit multistep approach [13, 14]. This method
is similar to the Adams-Bashforth method; however, the solution values are approximated
not only based on previous steps but also on the predicted step at ¢;;1. Considering a
dataset with ] +1 pOil’ltS (ti+1, fi+1) 5 (tl‘, fz) 5 (tifl, fifl) g eeey (ti,jJrl, fi*j+1) with ] = 3 the
fourth-order Adams-Moulton formula is given as follows [10]:

h
Xi+1 = X5 + ﬂ [9fi+1 + 19f1 - 5f7;71 + fifz] . (35)

3.2.3. Predictor-Corrector Methods

The Predictor-Corrector numerical method is a multi-step technique that combines both
explicit and implicit multi-step methods. This approach consists of two main steps [13, 14]:

Predictor: Use an explicit multi-step numerical method to approximate the solution at
step ti41

Corrector: The approximated solution obtained from the predictor step at ¢;;; is then
substituted into an implicit method to refine the approximation.

In this study, we implement the fourth-order Adams-Bashforth-Moulton Predictor-
Corrector numerical method to solve system (2.1), where the fourth-order Adams-Bashforth
formula is used in the Predictor step, and the fourth-order Adams-Moulton formula is used in
the Corrector step. Additionally, the four initial approximate solution values are determined
using the RK4 method. The specific formulas are presented below [10]:

Predictor P: Fourth-order Adams-Bashforth method.

h
x®) =%, + 5 [95%i — 59F;_y + 376,y — OF; 4] (3.6)
Corrector C: Fourth-order Adams-Moulton method.

c h
Xz('—i-)l =X; + ﬂ [gf (t7;+1, Xz(']—?i-)l) + 19f7, - 5f7;71 + f1;21| . (37)

3.3. Adaptive numerical methods

One of the key techniques in solving nonlinear differential equation systems is the use of
numerical methods capable of automatically adapting the step size flexibly. These numerical
methods typically combine pairs of higher-order and lower-order methods to estimate errors
and adjust the step size accordingly for different solution regions [21]. This approach ensures
the maintenance of accuracy while simultaneously enhancing computational efficiency.

In this study, we implement adaptive step-size numerical methods supported by the
solve_ivp library [18], including the RK45 method [11, 12]; the DOP853 method [13]; the
Radau method [14]; the BDF method [15]; and the LSODA method [16]. To adjust the
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adaptive step size, these numerical methods utilize two critical error tolerance parameters:
Relative tolerances (rtol) and Absolute tolerances (atol), ensuring that the estimated local
error of the solution satisfies the following condition [18]:

Local _error < atol 4 rtol x |x|.

where:

Local _error: is the estimated value of the local error.

rtol: is the relative tolerance.

atol: is the absolute tolerance.

x: represents the approximate solutions of the differential equation system at the
considered time point.

4. FEvaluation Method

Since the exact solution of the nonlinear energy resources supply-demand system is
unknown, evaluating numerical methods in this case is a challenging task. In this study,
we propose several approaches to assess the numerical methods implemented as follows:

a) Evaluating the accuracy of numerical methods by comparing the residual
between the left-hand side and the right-hand side:

To implement this method, the first task is to approximate the left-hand side of system
(2.1). In this study, based on the discrete solutions obtained from numerical methods, we
construct a first-order derivative approximation of the solution functions at the solution
points. Several approaches can be used for this purpose, such as finite difference methods or
function approximation. In this study, we approximate the system’s solution functions using
high-order spline interpolation [21] based on the discrete solution points, then compute
the approximate derivatives at these points. Simultaneously, the obtained solutions are
substituted into the right-hand side of the system. The Mean Absolute Error (MAE)
method [9] is used to measure the discrepancy between the left-hand side and the right-
hand side. A smaller MAE value indicates that the obtained solutions better satisfy system
(2.1). The formula below describes this approach:

Cresiaua = 7 O I¥'s — £ (t1,%)] (4.1)
t;eT

Where:

€residual: 18 the residual error to be computed for the system’s solutions.

x';: represents the derivative approximation of the solution functions of the system
at t;, obtained using numerical solutions.

L: is the total number of solution points considered.

T = (to, t1, ..., t,—1): is the set of selected time points.

b) Evaluating the accuracy of numerical methods using reference solutions:

One of the limitations of the residual-based evaluation method described above is that
the approximation of derivatives on the left-hand side may still introduce errors, depending
on the approximation method used. Consequently, this evaluation approach may not be
entirely accurate. In this study, we incorporate an additional evaluation method by using
reference solutions. According to numerical method error theory, a higher-order numerical
method or one using a smaller step size theoretically yields lower errors [6, 10, 13]. Based on
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this principle, we use the solutions obtained from higher-order methods as reference solutions
to assess the accuracy of solutions derived from lower-order methods or methods with larger
step sizes. Specifically, in this study, for fixed-step methods, the solutions obtained from
fourth-order methods are compared with those obtained from higher-order methods, namely
RK5 and sixth-order Taylor. A fourth-order method whose solutions closely match those of
higher-order methods is theoretically considered to have better accuracy.

For numerical methods with adaptive step sizes, we select a method and set its absolute
and relative error tolerances, as well as its maximum step size, to very low values. This
ensures that the solutions obtained using this method are theoretically more accurate. These
solutions are then used as reference solutions to evaluate the accuracy of numerical methods
configured with higher absolute and relative error tolerances, as well as larger maximum step
sizes. The Mean Absolute Error (MAE) method is then employed to evaluate the errors, and
its mathematical formulation is as follows:

€crror = % Z ’Xiilower - Xiihigher|' (42)
t,eT
Where:
€crror: Lhe error between the lower-accuracy method and the higher-accuracy method.
X; lower: The solution of the method with theoretically lower accuracy at t;
xi_higher: The solution of the method with theoretically higher accuracy at ¢;
L: The total number of solution points considered.
T = (to,t1,...,tr—1): is the set of selected time points.

¢) Convergence Rate Evaluation:

In this study, we employ numerical methods of the same fourth order to compare
their convergence rates. This is achieved by solving system (2.1) using these methods
with progressively smaller step sizes. Theoretically, as the step size decreases, the obtained
solution becomes more accurate. Therefore, if a method’s solution at a larger step size
rapidly approaches its solution at smaller step sizes, that method exhibits a faster empirical
convergence rate. We apply the following formula to evaluate the convergence rate of these
methods:

L% Z ‘Xi_hI*Xi_h2|
t; €T

Cspeed = (43)

L% > ‘Xi7h2 - Xi7h3|
t;€T>
Where:
Cspeed: The index for evaluating the convergence rate of the method
X; h,: Solutions obtained by the numerical method with step size hy at time t;
X; syt Solutions obtained by the numerical method with step size ho at time ¢;
X; hst Solutions obtained by the numerical method with step size hs at time ¢;
Ly: Total number of solution points compared between the numerical method using
step sizes hi and ho
T1 = (to,t1,...,tr,—1): the set of time points used to compare the solutions obtained
by the numerical method using two different step sizes, h; and heo.
Ls: Total number of solution points compared between the numerical method using
step sizes ho and hg
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Ty = (to,t1,...,tr,—1): the set of time points used to compare the solutions obtained
by the numerical method using two different step sizes, ho and hs.

For this evaluation method, the numerical methods being compared must have the same
order and be solved using the same step sizes hi, ho, and hg, satisfying the condition hy >
hs > hg. In this study, we use step sizes that decrease uniformly, specifically ho = hy/2;
hs = ha/2. A method with a higher Cypeeq value indicates a faster convergence rate within
the considered step size range.

5. Results

In this study, we conduct experiments to solve the differential equation system (2.1),
using the parameter values and initial conditions provided in Section 2., over the interval
t = [0,5000]. Table 5.1 presents the accuracy of fixed-step numerical methods using the
residual comparison approach based on formula 4.1, with the step size set to h = 0.01,
thereby obtaining L = 500, 000 discrete solution points. For this evaluation method, the step
size must be sufficiently small to ensure a more accurate approximation of the derivatives
on the left-hand side. In this study, from the discrete solution set obtained using numerical
methods, we apply a fifth-degree spline function to approximate the unknown functions [21],
then compute the approximate derivatives of these functions at the solution points. This
allows us to determine the approximated values on the left-hand side of the system.

The results indicate that single-step numerical methods, such as Runge-Kutta and
Taylor methods, achieve higher accuracy compared to multi-step methods, including Adams-
Bashforth and Adams Predictor-Corrector. Among them, although both exhibit similar
accuracy, the Taylor method requires less computation time than the Runge-Kutta method.
Additionally, although the RK5 method has a lower order than the sixth-order Taylor
method, it has a longer computation time. However, RK5 can achieve comparable accuracy
to the sixth-order Taylor method, suggesting that despite its higher computational cost, it
exhibits stability and effective error control. The Adams-Bashforth method demonstrates
the lowest accuracy but is also the most computationally efficient.

Tabmuma 5.1. OneHKa MOrPEeNrHOCTH YUCIEHHBIX METOOB ¢ (PUKCUPOBAHHBIM
maroM npu h = 0.01 Ha ocHOBe MeTO/1a CpaBHEHUS OCTATKA

Table 5.1. Error Evaluation of Fixed-Step Numerical Methods with h = 0.01 based
on the Residual Comparison Approach.

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK4 2.32198x 10712 | 1.95121x10712 | 2.19175x 10712 | 1.08941x 10712 | 12.508
RK5 2.14742x 10712 | 1.87919x 10712 | 2.15478x 10712 | 1.08296x 10712 |  25.666

Taylor Order 4 | 2.22146x10712 | 2.44939x 1072 | 2.80666x 10712 | 1.09848x10712 |  9.255
Taylor Order 6 | 2.14760x10712 | 1.87941x107'2 | 2.15499% 10712 | 1.08320x10712 | 14.861
Adams-BF 4 | 6.41036x1071° | 3.42839x1071% | 6.61115x10710 | 2.00785x107%° |  5.575
Adams-PC 4 | 2.18936x10719 | 1.10598 x 10710 | 2.18661x1071° | 6.93564x 1071 |  10.037

Figures 5.1, 5.2, 5.3, and 5.4 respectively illustrate the numerical solutions of system (2.1)
obtained using fourth-order methods. The numerical solutions exhibit strong oscillations
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with the presence of high-frequency regions, indicating the system’s strong mnonlinear
characteristics. If the step size h is not sufficiently small, the method may fail to capture
the rapid changes in the solution, leading to significant error accumulation as the solution
domain ¢ increases. A distinction can be observed between the solutions obtained from single-
step methods, namely RK4 and the fourth-order Taylor method, and those obtained from
multi-step methods, such as Adams-Bashforth and Adams Predictor-Corrector.

X1(t)
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0 1000 2000 3000 4000
Time Time
a) @1(t) b) w5(t)
109 50
Z s g2
N 0.0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Time
c) x3(t) d) xa(t)

Puc. 5.1. Yucsuennsle pemennst cucreMsl (2.1), mosrydeHHbIE ¢ UCIOIB30BAHAEM
merona PK4 npu mare h = 0.01

Fig. 5.1. Numerical solutions of the system (2.1), obtained using the RK4 method
with A = 0.01
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Time
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Time

¢) ws(t) d) xa(t)
Puc. 5.2. Yucsiennble perenus, moJrydeHHbIE C UCIIOJB30BAHUEM MeToja Teiopa
qerBépToro nopsiaka npu mare h = 0.01

Fig. 5.2. Numerical solutions obtained using the fourth-order Taylor method with
h =0.01
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Puc. 5.3. Yucsennbie penienus, moJydYeHHbIE C UCIOJIb30BaHuEM MeToja Anamca —
Bamdopra gyerBéproro nopsiyika npu mare h = 0.01

Fig. 5.3. Numerical solutions obtained using the fourth-order Adams-Bashforth
method with h = 0.01
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Puc. 5.4. Yucennble penieHus, MoJIyYeHHbIE C UCIOIb30BaHIEM MeToja AmamMca
MIPOTHO3a~KOPPEKIINU YeTBEPTOTO Hopsifka mpu mare h = 0.01

Fig. 5.4. Numerical solutions obtained using the fourth-order Adams
Predictor-Corrector method with A = 0.01

Figures 5.5 and 5.6 illustrate the numerical solutions of system (2.1) obtained using
the higher-order methods RK5 and sixth-order Taylor. It is observed that the numerical
solutions obtained from both methods exhibit minimal differences, indicating that with a
step size of h = 0.01, the solutions are relatively convergent over the interval ¢t = [0, 5000].
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Fig. 5.5. Numerical solutions obtained using the RK5 method with h = 0.01
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Puc. 5.6. Yucnennsle perenus, nojydeHHble C UCIIOIb30BaHHEM MeToma Teitopa
mrectoro mopsizika mpu mare h = 0.01

Fig. 5.6. Numerical solutions obtained using the sixth-order Taylor method with
h =0.01

Figures 5.7 and 5.8 illustrate the numerical solutions of system (2.1) using the high-order

methods RK5 and sixth-order Taylor with a step size of h = 0.01. It is observed that as the
time domain extends to ¢ = [0, 10000], the accumulated error increases significantly, leading
to considerable discrepancies between the numerical solutions obtained by the two methods.
Therefore, for the examined time domain, reducing the step size may be necessary to ensure
greater accuracy and convergence of the solution.
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Fig. 5.7. Numerical solutions obtained using the RK5 method with h = 0.01 and
t = [0,10000]
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Puc. 5.8. Yucniennnie pernenus, moyIeHHbIE C UCITOIb30BaHNEM MeToma Teitaopa
mrectoro nopsizka npu mare h = 0.01 u ¢ = [0, 10000]

Fig. 5.8. Numerical solutions obtained using the sixth-order Taylor method with
h =0.01 and ¢ = [0, 10000]

Figures 5.9 illustrate the numerical solutions of system (2.1) in a three-dimensional space,
obtained using the sixth-order Taylor method, with a step size of h = 0.01 and ¢ = [0, 5000].
It is observed that the system’s solutions in the chaotic state exhibit a complex dynamical

structure.
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Puc. 5.9. I'padwuku npoeknnmit GpazoBbix Tpaekropuii cucrems! (2.1), mosydennoie
JHCAeHHBIM MeTonoM Teiiopa mecroro nopsaxa npu h = 0.01 u t = [0, 5000], za
COOTBETCTBYIOIINE TPEXMEPHBIE TOJIITPOCTPAHCTBA

Fig. 5.9. Graphs of projections of phase trajectories of the system (2.1), obtained
by the sixth-order Taylor numerical method for A = 0.01 and ¢t = [0, 5000], onto the
corresponding three-dimensional subspaces

Tables 5.2 and 5.3 present the results of comparing fourth and fifth-order fixed-step
numerical methods with the higher-order sixth-order Taylor method, using formula 4.2 over
the solution domain ¢ = [0,5000] at different step sizes of 0.1 and 0.01. The results indicate
that, compared to fourth-order methods, the solutions obtained from the fifth-order RK5
method exhibit significantly lower error when compared to the sixth-order Taylor method.

When comparing the numerical solutions obtained from different fourth-order methods
with those from the sixth-order method, the results indicate that single-step fourth-order
methods yield lower errors than multi-step methods. Among them, the fourth-order Taylor
and fourth-order Runge-Kutta methods demonstrate comparable error levels, but the fourth-
order Taylor method requires less computation time than the fourth-order Runge-Kutta
method. However, at a larger step size (h = 0.1), the RK4 method produces solutions with
lower error than the fourth-order Taylor method. As the step size decreases, the results from
Tables 5.2 and 5.3 further show that the single-step methods RK4 and fourth-order Taylor
exhibit a faster error reduction rate compared to multi-step methods based on the Adams
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formula. Consequently, their solutions converge more rapidly to the sixth-order method’s
solutions.

Tabsinga 5.2. CpaBHeHHUE OTPEIIHOCTEH YUCIEHHBIX METO0B YeTBEPTOrO U
[SITOTO MOPsifiKa ¢ MeTonoM Teitsopa mecroro nopsinka npu mare b = 0.1
Table 5.2. Error comparison of fourth-order and fifth-order numerical methods
with the sixth-order Taylor method at h = 0.1

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK4 0.3201646816 | 0.3074583273 | 0.2545435753 | 0.2405862251 1.301
RK5 0.0106139637 | 0.0066821595 | 0.0025826036 | 0.0091452239 2.548

Taylor order 4 | 0.3677339589 | 0.5283631888 | 0.3963504489 | 0.3275716874 0.933
Adams-BF 4 0.9803687400 | 1.0451732467 | 0.8478472690 | 0.7701285329 0.584
Adams-PC 4 | 0.9257142090 | 1.0183955740 | 0.7794342566 | 0.7509303939 1.016

Tabunia 5.3. CpaBHeHHUe [TOTPEIIHOCTEN YNCIEHHBIX METO0B YeTBEPTOrO U
MSITOrO MOpsijiKa ¢ MeTojoM Teiiopa 1mecroro nopsigka mnpu mare h = 0.01
Table 5.3. Error comparison of fourth-order and fifth-order numerical methods
with the sixth-order Taylor method at A = 0.01

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK4 0.0016633238 | 0.0011119776 | 0.0004133325 | 0.0013543109 12.508
RK5 8.11004x107% | 5.47477x 107" | 2.01610x107% | 6.55285x10°% |  25.666

Taylor order 4 | 0.0013549301 | 0.0009225286 | 0.0003366501 | 0.0010875024 9.255
Adams-BF 4 0.6969048783 | 0.9875354755 | 0.7338413482 | 0.6110239391 5.575
Adams-PC 4 0.6352375876 | 0.8482451456 | 0.6250611408 | 0.5381780426 10.037

Tables 5.4 and 5.5 present the errors between the numerical solutions obtained using
fourth-order methods and the fifth-order Runge-Kutta method over the solution domain
t = [0,5000], at step sizes of 0.1 and 0.01. The results exhibit similar trends to those
observed when comparing these methods with the sixth-order Taylor method.

Tabauna 5.4. CpaBHeHNE TOTPENTHOCTEN MEXK/Iy UNCTEHHBIMUA METOIAMU
4eTBEPTOro nmopsaaka u MerogoM Pynre-Kyrrol naroro nopsanka (RK5) npu mare

=0.1
Table 5.4. Comparison of errors bethen f(())urth—order numerical methods and RK5
at h =0.1
Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK4 0.3222448445 | 0.3093120751 | 0.2551649732 | 0.2409296628 1.301
Taylor order 4 | 0.3686927666 | 0.5287241577 | 0.3957364282 | 0.3253967559 0.933
Adams-BF 4 | 0.9800879315 | 1.0470551703 | 0.8487057242 | 0.7690135558 0.584
Adams-PC 4 | 0.9219998790 | 1.0193316583 | 0.7804187325 | 0.7464283058 1.016

Bo B. Y., Hosiargam C., /Iperisa A. U., Cugopos /1. H.. Hccaenoanne 9uc/JI€HHBIX METOJOB PEIICHHS . . .



2Kypnas CpeHeBoKCKOro MareMarnieckoro obrmecrsa. 2025. T. 27, Ne 2. 161

Tabsua 5.5. CpaBHeHHE OrPEIIHOCTEH MEXK /Ly YNCIEHHBIMUA METO/[aMU
9eTBEPTOro mopsika u MerogoM Pynre-Kyrror naroro nmopsanka (RK5) npu mare
h =0.01
Table 5.5. Comparison of errors between fourth-order numerical methods and RK5
at h =0.01

Method

X1(t) error

X2(t) error

X3(t) error

X4(t) error

Time (s)

RK4

0.0015822653

0.0010573021

0.0003931734

0.0012888379

12.508

Taylor order 4

0.0014360006

0.0009772263

0.0003568097

0.0011529920

9.255

Adams-BF 4

0.6969151280

0.9875166627

0.7338327435

0.6110366128

5.575

Adams-PC 4

0.6352336703

0.8482619023

0.6250628251

0.5381703950

10.037

To evaluate the convergence rate of numerical methods, this study applies various fourth-
order numerical methods to solve system (2.1) over the solution domain ¢ = [0, 5000], with
progressively decreasing step sizes, starting from h = 0.5. The error between numerical
solutions at successive step size reductions (each step size being half of the previous one) is
measured, and the convergence rate is computed using formula 4.3 proposed in this study.
The results, presented in Table 5.6, show that for larger initial step sizes, all numerical
methods exhibit similar convergence rates, mostly around 1. This indicates that all the
methods converge slowly or have not yet stabilized within the considered step size range.

Tables 5.7 and 5.8 present results for further reductions in step size, showing that single-
step methods demonstrate an increasing convergence rate, which becomes significantly higher
as the step size decreases. In contrast, multi-step methods exhibit a slower and inconsistent
convergence rate. These findings indicate that single-step methods tend to converge more
effectively than multi-step methods, while multi-step methods may require smaller step sizes
to achieve convergence. This result is also consistent with previous evaluations based on the
residual method and reference solutions obtained from higher-order numerical methods.

Tabsmia 5.6. CpaBHeHHE CKOPOCTEN CXOAMMOCTH YHCJIEHHBIX METOJ[OB Y€TBEPTOrO
nopsifka ¢ puUKCHpoBaHHBIM maroM mpu hy = 0.5, he = 0.25, hs = 0.125
Table 5.6. Comparison of the convergence rates of fourth-order fixed-step methods
at h1 = 0.5, ho = 0.25, h3 = 0.125

Method X1(t) speed | X2(t) speed | X3(t) speed | X4(t) speed
RK4 1.485 1.132 1.209 1.445
Taylor order 4 1.235 1.042 1.174 1.124
Adams-BF 4 1.285 1.369 1.383 1.269
Adams-PC 4 1.047 0.769 0.816 0.935

Tabsma 5.7. CpaBHeHHE CKOPOCTEl CXOAMMOCTH YHUCJIEHHBIX METOJIOB Y€TBEPTOrO
ropsifika, ¢ pukcupoBaHHbIM ItaroM npu hy = 0.125, he = 0.0625, hs = 0.03125
Table 5.7. Comparison of the convergence rates of fourth-order fixed-step methods
at hy = 0.125, hp = 0.0625, hs = 0.03125

Method X1(t) speed | X2(t) speed | X3(t) speed | X4(t) speed
RK4 1.942 2.531 2.392 2.119
Taylor order 4 1.665 2.916 2.637 1.888
Adams-BF 4 1.166 1.427 1.363 1.268
Adams-PC 4 1.176 1.945 1.776 1.321
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Tabsua 5.8. CpaBHeHHE CKOPOCTEN CXOAMMOCTH YHCJIEHHBIX METOJ[OB Y€TBEPTOrO
nopsifka ¢ dpukcupoBanHbiM maroM npu by = 0.03125, he = 0.015625,
hs = 0.0078125
Table 5.8. Comparison of the convergence rates of fourth-order fixed-step methods
at hy = 0.03125, he = 0.015625, hs = 0.0078125

Method X1(t) speed | X2(t) speed | X3(t) speed | X4(t) speed
RK4 8.040 8.849 11.401 8.316
Taylor order 4 7.196 8.843 16.467 6.634
Adams-BF 4 1.140 1.082 1.150 1.060
Adams-PC 4 1.162 1.169 1.175 1.177

In this study, adaptive step-size numerical methods supported by the SciPy library [17-
18] are implemented to solve the differential equation system (2.1). These methods include
RK45, DOP853, Radau, BDF, and LSODA. The system (2.1) is solved over the domain
t = [0,5000], discretized into L = 500,000 equally spaced solution points.

Tables 5.9 present the accuracy evaluation of these methods using the residual-based
measurement defined in equation 4.1, with the parameter max step = 0.01, atol = 10~ '?
and rtol = 107%. The results indicate that adaptive single-step methods, such as RK45,
DOPS853, and Radau, achieve higher accuracy than adaptive multi-step methods, namely
BDF and LSODA, with DOP853 exhibiting the best accuracy.

Tabaumna 5.9. CpaBHeHUE TOI'PEINTHOCTENH aJAITUBHBIX YUCJIEHHBIX METOJIOB C
HCITOJIb30BAHUEM METO/Ia U3MEPEHUsI OCTATKA

Table 5.9. Comparison of the errors of adaptive numerical methods using the
residual measurement method

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK45 1.62218x1071* | 3.18855x 10714 | 1.81544x 10714 | 1.93451x107 1 | 54.624
DOP853 | 1.60911x107 % | 3.14930x 107 | 1.79521x 10~ | 1.91034x 107 | 104.688
Radau 3.13656x 10714 | 6.87510x 10714 | 6.66809x 1074 | 1.93717x107 | 140.390
BDF 2.23207x 10712 | 7.22017x 10712 | 9.07787x 10712 | 5.86248x 1073 | 87.648
LSODA  |2.33088x10712 | 2.10136x10712 | 2.35122x 10712 | 1.14341x 1072 | 18.278

In addition to evaluating the accuracy of adaptive numerical methods through residual
error measurement between the left-hand and right-hand sides, this study also assesses
these methods by comparing them with reference solutions, as presented in Section 4.
Specifically, two methods were selected to generate reference solutions: DOP853, a high-
order method representing single-step numerical methods, and BDF, representing multi-step
numerical methods. These methods were assigned stringent accuracy parameters (i.e., small
values for atol, rtol and max step). The system (2.1) is then solved using the two selected
reference methods to obtain highly accurate solutions, which serve as reference solutions
for comparison and evaluation. The adaptive numerical methods under assessment were
assigned lower accuracy requirements.

Tables 5.10 and 5.11 present the errors when comparing the solutions of adaptive
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numerical methods configured with accuracy settings of atol = 107%, rtol = 107%, and max
step = 0.1 to the highly accurate reference solutions obtained using the selected reference
methods, DOP853 and BDF (atol = 107'2, rtol = 107 and max step — 0.01), over
the interval ¢ = [0,5000]. The results show that adaptive single-step numerical methods
continue to outperform adaptive multi-step numerical methods. Among them, DOP853
achieves the highest accuracy, followed by the single-step methods Radau and RK45, which
have comparable accuracy. However, Radau requires a longer computation time, which is

entirely expected due to its implicit nature.

Tabsinga 5.10. CpaBHeHUE MOTPENTHOCTEN MeXK/ly aJallTUBHBIMYA YUCJIEHHBIMU

METOaMH ¢ HU3KUMHU HACTpOiikamu TodHOCTH (atol = 1079 rtol = 107% u
makcumaabubli mar = 0.1) u stamonasim merogom DOP853, nacTpoeHHbIM Ha
BBICOKYIO TouHOCTb (atol = 107'2, rtol = 107%, max step = 0.01)

Table 5.10. Error comparison between adaptive numerical methods with lower
accuracy settings (atol = 107%, rtol = 107° and max step=0.1) and the reference
method DOP853, set with parameters for high accuracy (atol = 10712,
rtol = 107%, max step = 0.01)

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK45 0.0847663554 | 0.0813651643 | 0.0571416993 | 0.0634416895 5.662
DOP853 | 1.23895x107% | 8.36145x 107 | 3.07995x 107 | 1.00127x107% |  10.392
Radau 0.0759208190 | 0.0708642717 | 0.0474347373 | 0.0559951801 13.920
BDF 0.6086937873 | 0.5833698577 | 0.5198981051 | 0.4354076134 8.677
LSODA 0.5265124258 | 0.4244004704 | 0.3941582924 | 0.3654465934 2.146

Tabauma 5.11. CpaBHeHne MOTPENTHOCTEN MEXKIY aJAlTHBHBIMU IUCICHHBIMU
METO/IaMU € HU3KUMU HACTPOikamu ToqnocTu (atol = 107%, rtol =107% u
MakcuMaJibHbIH mar = 0.1) u sranorssiM MeTonoM BDF| HACTPOEHHBIM Ha BBICOKYIO
toanocts (atol = 1072, rtol = 107%, max step = 0.01)

Table 5.11. Error comparison between adaptive numerical methods with lower
accuracy settings (atol = 107, rtol = 107°® and max step=0.1) and the reference
method BDF, set with parameters for high accuracy (atol = 1072, rtol = 107°,
max step = 0.01)

Method X1(t) error | X2(t) error | X3(t) error | X4(t) error | Time (s)
RK45 0.1099220031 | 0.1186788941 | 0.0876441707 | 0.0886665677 5.662
DOP853 0.0668795589 | 0.0457344731 | 0.0317789621 | 0.0591959604 10.392
Radau 0.1023159919 | 0.1080904800 | 0.0780278565 | 0.0848352444 | 13.920
BDF 0.6065371580 | 0.6115335048 | 0.5396587152 | 0.4378548469 8.677
LSODA 0.5309210513 | 0.4370703576 | 0.4003046808 | 0.3784663871 2.146

Figures 5.10, 5.11, 5.12, 5.13, and 5.14 respectively depict the numerical solutions of
system (2.1) using the adaptive numerical methods RK45, DOP853, Radau, BDF, and
LSODA over the domain ¢ = [0,5000], with max step = 0.01, atol = 10~'2, rtol = 107%.
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Puc. 5.10. Yucnennsle pemenus, I0JIydeHHbIEe ¢ HCOIb30BaHueM Metona RK45

Fig. 5.10. Numerical solutions obtained using the RK45 method
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Puc. 5.11. Yucnennsle penreHust, moyydeHHble ¢ UCIOab30BanneM Meromga DOP853

Fig. 5.11. Numerical solutions obtained using the DOP853 method
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Puc. 5.12. Yucnennsie pernrenusi, mMoIydYeHHbIE C UCIOIb30BaHneM MeToga Radau

Fig. 5.12. Numerical solutions obtained using the Radau method

Bo B. Y., Hosiargam C., /Ipersisa A. U., Cugopos /1. H.. HUccaenoanune 9uc/JI€HHBIX METOJOB PEIICHHS . . .



2Kypnas CpeiHeBOIKCKOrO MaTeMaTnieckoro obrmectsa. 2025. T. 27, Ne

2. 165

X1(t)

0 1000 2000 3000
Time

a) z1(t)

4000

5000

X3(1)

1000 2000 3000 4000 5000
Time

b) xa(t)

0 1000 2000 3000
Time

¢) 3(t)

4000

5000

1000 2000 3000 4000 5000
Time

d) wa(t)

Puc. 5.13. Yucnenusle pemnrenusi, MoJIy9eHHbIE C UCIOIb30BaHneM Meroza BDF

Fig. 5.13. Numerical solutions obtained using the BDF method
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Puc. 5.14. Yucnennble perieHus, MoJyYeHHbIE ¢ UCIOIb30BanueM Meroga LSODA

Fig. 5.14. Numerical solutions obtained using the LSODA method

Figures 5.15 and 5.16 illustrate the numerical solutions of the system over the extended
time domain ¢ = [0, 10000], obtained using two highly regarded numerical methods: DOP853
and Radau. It can be observed that as the time domain increases, the solutions no longer
maintain the similarity seen in figures 5.11 and 5.12 (where ¢ < 5000). Furthermore, a
comparison of the numerical results in the domain ¢ > 5000 obtained using the RK5 and
sixth-order Taylor methods as shown in figures 5.7 and 5.8, reveals that when the system is in
a chaotic state, the accumulated error increases rapidly, leading to significant discrepancies
in the numerical solutions and making convergence difficult within this domain.
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Fig. 5.15. Numerical solutions obtained using the DOP853 method with
t = [0, 10000]
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Fig. 5.16. Numerical solutions obtained using the Radau method with ¢ = [0, 10000]
6. Conclusion

In this study, we implemented numerical methods to solve the nonlinear energy resources

supply-demand system, including single-step methods, multi-step methods, and adaptive
step-size methods. The effectiveness of these methods was analyzed and evaluated for
the given problem. Experimental results indicate that, in the considered cases, single-step
methods were more effective than multi-step methods in terms of accuracy and convergence
speed, while multi-step methods demonstrated higher computational efficiency, as they
required less computation time. Adaptive step-size numerical methods demonstrated both
flexibility and stability. Based on the evaluation and analysis of the system’s numerical
solutions, the system exhibits nonlinearity and chaotic behavior. In addition, the system’s
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components change rapidly and influence each other significantly, potentially leading to
irregular oscillations and the emergence of complex dynamics. Therefore, to ensure numerical
stability and accurately simulate the long-term dynamic behavior of the system, it is
essential to employ high-order numerical methods combined with an appropriate step size.
In this study, we focused on implementing representative numerical methods to solve the
nonlinear energy resources supply-demand system, in which certain aspects of the system’s
behavior were observed through numerical solutions. To gain a more comprehensive and
in-depth understanding, future research should extend the experimental scope, investigate a
wider range of solution domains and parameters, and analyze the effectiveness of numerical
methods when applied to more complex cases of the system.
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