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1. Introduction

Information on fized point methods can be found in the review [1]. Fixed point methods
are widely used in functional analysis, differential equations and other areas of mathematics.
All fixed point methods are characterized by the identification of sufficient (and sometimes
necessary) conditions for some partial transformation f (i.e., a mapping of the form f :
A — X, where A C X) of some set X to have a fixed point (i.e., there exists z € X such
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that f(z) = ). For example, according to Brouwer’s fixed point theorem, any continuous
mapping of a closed ball into itself (in a finite-dimensional Euclidean space) has a fixed point.
Let us denote some well-known theorems that give sufficient conditions for the existence of
a fixed point: Hopf’s Theorem ([2]), Birkhoff-Kellogg’s Theorem ([3]), Schauder’s Theorem
([4]). Methods for constructive construction of a fixed point have also been developed. The
Banach contraction mapping Theorem (the case of a metric space) is well known.

The main result of the paper is Theorem 3.1 (see Section 2), which gives necessary and
sufficient conditions for a point x to be a fixed point of a mapping f : X — X (le. fisa
transformation of X). Theorem 3.1 is valid for any nonempty set X and any transformation
f of X. The necessary and sufficient conditions are formulated using the concept of a bipolar
type of endomorphism of a groupoid with pairwise distinct left translations. In addition,
sufficient conditions are obtained for a point not to be a fixed point of a transformation
of some nonempty set. These conditions are expressed as Theorem 3.2 and are formulated
using bipolar types of endomorphism of an arbitrary groupoid. The restrictions on left
translations disappear. The latter makes Theorem 3.2 easier to use than Theorem 3.1; but
the latter gives a stronger statement. The bipolar type of groupoid endomorphism arises in
([5]) in the context of bipolar classification of groupoid endomorphisms, which aims to study
the following general problems.

Problem 1.1. For a fized groupoid G, give an element-wise description of the monoid
of all endomorphisms.

Problem 1.2. For a fized groupoid G, give an element-wise description of the group
of all automorphisms.

The fixed point criterion given by Theorem 3.1 is not easy to use. The difficulties
in working with it are explained by its universality and problems in working with
endomorphisms of a groupoid (as specific transformations). In this paper, we formulate
general Problems 4.1-4.5 (see Section 3). Successes in studying these problems should
facilitate working with endomorphisms of a groupoid in the context of Theorem 3.1.
Consequently, the possibilities in applying the obtained fixed point criterion should be
expanded.

The fixed point criterion of Theorem 3.1 is formulated for a transformation. Every partial
transformation of any nonempty set can be represented as an ordinary transformation on the
new set. In analysis, the connection between fixed points and zeros of some function is well
known. All this allows us to apply Theorem 3.1 to the study of the Riemann hypothesis on
the zeros of the zeta function. In this paper, we obtain necessary and sufficient conditions for
the Riemann hypothesis to be satisfied. The result is expressed as Theorem 5.1 (see Section
4). Theorem 5.1 demonstrates how the results of Theorem 3.1 can be adapted to partial
transformations.

Progress in solving Problems 4.1-4.5 may be useful for proving or disproving the Riemann
Hypothesis. It is possible that Theorem 5.1 together with accumulated experience with
the Riemann zeta function will lead to significant results on its own (without solving
the indicated problems). Corollaries 5.1 and 5.2 (see Section 4) of Theorem 5.1 clearly
demonstrate that the results of studying Problems 4.1-4.5 can be applied to studying the
Riemann Hypothesis.
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In 2024, the material ! «Michael Francis Atiyah. The Riemann Hypothesis»> with a proof
of the truth of the Riemann hypothesis (open access since 2018) is easily found on the
Internet. This work is not published in a peer-reviewed scientific journal (it appeared in
the fall of 2018). The author is the outstanding mathematician Michael Francis Atiyah.
Criticism of Atiyah’s proof is found on the Internet, which is also not published in peer-
reviewed scientific journals. A rigorous assessment (and publication of this assessment) of
Atiyah’s results is complicated by the lack of detail in the proof. Indeed, due to the style
of presentation of the material, any assessment of it can only be based on assumptions.
The situation is aggravated by Atiyah’s death in January 2019. Due to the lack of detail in
the proof and the lack of publication in a peer-reviewed journal, the author of this paper
considers the Riemann hypothesis about the zeros of the zeta function to be unproven.

2. Basic Definitions and Preliminary Results

A groupoid (or magma) is a tuple G = (G, %), where (x) is a binary algebraic operation
on a set G. The set G is called the support of the groupoid G = (G, *). In this paper, the
name of the groupoid and its support will be denoted differently where appropriate.

The set of all transformations of a set X will be denoted by I(X) (other notations are
also available). The set I(X) is called the symmetric semigroup of transformations of the set
X (since it is a semigroup with respect to composition). A homomorphism of a groupoid G
into itself is called an endomorphism of the groupoid G. The set of all endomorphisms of a
groupoid G is denoted by End(G). A transformation « of a groupoid G is an endomorphism
of the groupoid G if and ouly if for any z,y € G the equality a(x * y) = a(z) * a(y) holds.

In [5], the definition of a bipolar type of endomorphism of a groupoid is introduced.
We present this definition and related objects. By Bte(G) we denote the set of all possible
mappings of the set G into the set {1,2}. Mappings from this set will be called bipolar types
of endomorphisms of the groupoid G (or simply bipolar types). In [5], for each bipolar type 7,
a base set of endomorphisms D(7y) of the bipolar type 7 is introduced (see Definition 3 in [5]).
It follows from Theorem 1 of [5] that every endomorphism of an arbitrary groupoid lies in
exactly one base set of endomorphisms. Therefore, each endomorphism of a groupoid can be
assigned its bipolar type in a unique way (this is the bipolar classification of endomorphisms).

The bipolar type of endomorphism « is denoted by T'y,. A left translation (or an internal
translation) of an element x € G of a groupoid G = (G, ) is a transformation h, of a set
G such that for any z,y € G the equality h,(y) = = x y holds. We say that G is a groupoid
with pairwise distinct left translations if for any x,y € G the equivalence hy = hy & 2 =y
holds. Theorem 2.2 from [6] is formulated below as Lemma 2.1.

Lemma 2.1. Let G be a groupoid with pairwise distinct left translations. Then for an
arbitrary g € G and any endomorphism ¢ of the groupoid G the following equivalences hold:

Ty(9) =14 d(9) =g, Ty(9) =24 é(9) # g. (2.1)

Let G be a groupoid. For each g € G, we introduce the set M, := {m € G | hy, = hy}.
Theorem 2.1 from [6] is formulated below as Lemma 2.2.

Lemma 2.2. Let G be a groupoid. Then for any g € G and any endomorphism ¢ of
the groupoid G, the following equivalences hold:

Lolg) =1 d(g) € My,  Ty(g) =2« olg) € G\ M.
Thttps://drive.google.com/file/d /17NBICP60cUSucrXKNWvzLmrQpfUrEKuY /view
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3. Universal Fixed Point Criterion

In this section we formulate and prove Theorem 3.1, which will give a universal fixed
point criterion for an arbitrary transformation of a set in terms of bipolar types. We will
preface it with the preliminary results.

A groupoid G = (G, *) is called a singular semigroup if for any z,y € G the equality
2 xy = x holds (more precisely, a left zero semigroup). This groupoid is associative. The
following lemma is trivially established.

Lemma 3.1. On any non-empty set G, we can define a singular semigroup G = (G, *).
For a singular semigroup G = (G, %), the equality of sets End(G) = I(G) holds. The singular
semigroup G = (G, ) is a groupoid with pairwise distinct left translations.

Proposition 3.1. Let ¢ be some transformation of the set G, G1 = (G, *1) and
Gy = (G,*q) be two groupoids with pairwise distinct left translations such that ¢ is an
endomorphism of both groupoids. We assume that I‘gl 18 the bipolar endomorphism type ¢

of the groupoid G1 and ng is the bipolar endomorphism type ¢ of the groupoid G. Then
the equality Fgl = I‘% holds.

Proof. The assertion follows directly from Lemma 2.1.

In general, the following assertion holds.

Proposition 3.2. One can specify a set G and its transformation ¢ such that there
will exist two groupoids G1 = (G, x1) and Gy = (G, *2) satisfying the conditions

¢ € End(G1), ¢ € End(Gy), TG #TG2.

Proof Take the groupoid from Example 1 of [6]. In this example, the base set
D(1,1,2,1) contains an endomorphism (2,2,2,3). For this groupoid I'y(1) = 1, but 1 is
mapped to 2 by ¢ = (2,2,2,3). On the other hand, one can construct a singular semigroup
with the same support (see Lemma 3.1). In a singular semigroup, the bipolar endomorphism
¢ =(2,2,2,3) on 1 will be equal to 2, since 1 is not a fixed point of this endomorphism and
the singular semigroup has pairwise distinct left translations (i.e., it satisfies the conditions
of Lemma 2.1). The assertion is proved.

Theorem 3.1. Let G be an arbitrary nonempty set and « be an arbitrary
transformation of G. Then a point g € G is a fized point of the transformation « if and
only if the following conditions are simultaneously satisfied:

1) there exists a groupoid Go = (G, *) with pairwise distinct left translations such that the
transformation « is an endomorphism of this groupoid;

2) the equality Iy (g) = 1 holds, where I'y, is the bipolar type of the endomorphism « of the
groupoid Gyg.

Proof  Let us show necessity. Let ¢ € G be an arbitrary fixed point of the
transformation «. Introduce a singular semigroup Gy = (G, *) with support G (this is
possible by Lemma 3.1). The transformation « is an endomorphism of the semigroup Gy
(follows from Lemma 3.1). Since all left translations of elements of the semigroup Gy are
distinct, the equality T'y(g) = 1 holds (the latter follows from the equivalence (2.1)). Thus,
we have shown that if g € G is a fixed point of the transformation «, then statements 1 and
2 from the hypothesis of the Theorem hold.

JluraBpun A. B.. O6 ogHOM yHHUBEPCAJIbHOM KPUTEPHUH HEIOJBHXKHOH TOYKH
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Let us show sufficiency. If statements 1 and 2 from the conditions of the current Theorem
are satisfied, then by virtue of the equivalence (2.1) from Lemma 2.1 we obtain that g is a
fixed point of the transformation . The Theorem is proved.

In [5], © denotes the bipolar type of a groupoid G such that for any g € G, Q(g) = 2
(the second bipolar type) holds. Theorem 3.1 implies

Corollary 3.1. A transformation « of a nonempty set G has at least one fixed point
if and only if there exists a groupoid Gy = (G, %) with pairwise distinct left translations such
that o is an endomorphism of the given groupoid and the bipolar type of the endomorphism
a of this groupoid does not coincide with €.

It follows from Lemma 3.1 that every transformation of the set G is an endomorphism
of the singular semigroup with support G. This makes it possible to apply the fixed point
criterion from Theorem 3.1 to any transformation of an arbitrary set G. The latter indicates
the universality of the above criterion.

If we abandon the condition of pairwise distinctness of left translations in the groupoid,
then we can obtain sufficient (but not necessary) conditions for the point g € G not to be a
fixed point of the transformation «.

Theorem 3.2. Let G be an arbitrary nonempty set and « be an arbitrary
transformation of G. We assume that for an element g € G the following conditions are
simultaneously satisfied:

1) there exists a groupoid Gy = (G, *) such that the transformation « is an endomorphism
of this groupoid;

2) the equality T'o(g) = 2 holds, where T, is the bipolar type of the endomorphism « of the
groupoid Gyg.

Then the element g is not a fixed point of the transformation c.

Proof Suppose that g is a fixed point of the transformation a and statements 1 and
2 from the condition of the Theorem hold. Since a(g) = g, the set M, contains the element
a(g). Therefore, a(g) ¢ G\ M,. The latter leads to a contradiction with the assertion of
Lemma 2.2. Thus, ¢ is not a fixed point of . The Theorem is proved.

The above Theorem gives sufficient conditions for a point g € G not to be a fixed point
of a. These conditions are precisely sufficient. They trivially imply necessary conditions for
a point g to be a fixed point of ar. We formulate these conditions as

Corollary 3.2. If a transformation « of a nonempty set G has a fized point g € G,
then there is no groupoid with support G and endomorphism « such that T',(g) = 2 in this
groupoid.

Example 3.1. Let p(x) :=(1/2)x + 1 be a transformation of the set R, where (4),
(/) are the usual operations on real numbers. Let us show that x = 2 is a fized point of the
transformation ¢. Consider the groupoid G = (R, x*), where for any z,y € R the equality
cxy:=x+y—2 holds. For any x,y € R we have the equalities

plaxy) =(1/2)(z+y—-2)+1=(1/2)(z +y),

p(a) xp(y) = (1/2)z+ 1+ (1/2)y +1-2=(1/2)(z + y).
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These equalities show that ¢ is an endomorphism of the groupoid G. The element e = 2
is the neutral element of the groupoid G. It is easy to verify that the groupoid G is a group.
Therefore, G has pairwise distinct left translations of elements. It is well known that the
neutral element is invariant under all endomorphisms. Therefore e is a fixed point of ¢ and
I',(e) =1 (the last equality holds by Lemma 3.1).

Another way to check that e = 2 is a fixed point of ¢ (and the only one at that) is to
directly check that I',,(e) = 1. We will do this using equivalence (2) from [6]. The definitions
of the sets L(V)(g) can be found in [5] or [6] (type-forming sets). Thus I',(g) = 1 if and only
if o € LM (g). Let p € LW (x) for z € R. Then for any y € R the following equalities hold:
ho(@y(y) = he(y), @ - he = hy - . Each of these equalities holds if and only if 2 = 2. Indeed,
the latter follows from the relations:

ho@)(y) = ¢(@) xy=(1/2)xr +1+y -2, ho(y)=z+y—2,

¢ ho(d) = (1/2)(x+d—2)+1, hy-o(d)=((1/2)d+1)+z—2, (VdeR).

Therefore, only for = 2 does the equality I',(x) = 1 hold, hence x = 2 is the only fixed
point of the transformation ¢ (follows from Theorem 3.1).

In Example 3.1 above, we established that 2 is a fixed point of ¢ by using the well-known
fact that a group-to-group homomorphism maps an identity element to an identity element
(in this case, we did not use linear equation solving methods). On the other hand, when
we computed T',(g) by definition, we were forced to work with linear equations (i.e., we
used methods that could by themselves give a fixed point of ¢). The latter circumstance
illustrates that further investigations of the properties of groupoid endomorphisms and the
properties of bipolar types are needed to make productive use of the fixed point criterion
given by Theorem 3.1. In the next section we formulate general problems 4.1, 4.2, 4.3, 4.4,
and 4.5. Advances in the study of these problems will expand the possibilities of applying
the fixed point criterion from Theorem 3.1.

Theorem 3.1 can be applied to a wider range of problems than the statement about
the image of the neutral element under a group homomorphism into a group. Indeed, for a
particular transformation ¢, it is easier to find a groupoid whose endomorphism is ¢ than
to construct a group with a similar condition.

Remark 3.1. In recent years, groupoids have found applications. For example, an
application of groupoids in biology can be found in [7]. An application of groupoids (more
precisely, non-associative groupoids) in cryptography can be found in [8], [9], [10]. There are
works aimed at modeling various processes associated with neural networks using groupoids.
In this context, the study of the fixed point criterion from Theorem 3.1 seems relevant from
the standpoint of algebra applications.

4. Open Problems

For any nonempty set G, let Gru(G) denote the set of all groupoids with universe G.
This set is equivalent to the set Hom(G x G, G). For any transformation « of a nonempty
set G, let Gru(G, o) denote the set of all groupoids S = (G, ) in Gru(G) such that « is an
endomorphism of the groupoid S. In the context of Theorem 3.1, there is a natural interest
in the following general problem.

JluraBpun A. B.. O6 ogHOM yHHUBEPCAJIbHOM KPUTEPHUH HEHOJBHXKHOH TOYKH
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Problem 4.1. For a fized set G and a fized transformation « of I(G), solve the
following problems.

(a) Give an element-wise description of the set Gru(G, «v).

(b) Give an element-wise description of all groupoids from Gru(G,«) that have pairwise
distinct left translations.

(¢) Give an element-wise description of all groupoids S = (G,*) from Gru(G,«a) such
that for any x € G the transformation inequality h, # o holds, where h, is the left
translation of element x in groupoid S.

Lemma 3.1 shows that on every non-empty set one can introduce a singular semigroup.
The operation in the singular semigroup is structured quite simply, and the set of all
endomorphisms coincides with the symmetric semigroup. Consequently, all base sets of
endomorphisms of the singular semigroup are non-empty (follows from Lemma 2.1).
Therefore, the singular semigroup does not have specificity that can be applied for productive
use of Theorem 3.1. There is a natural interest in having a list of all groupoids with pairwise
distinct left translations and endomorphism «, which is studied for fixed points. This explains
the interest in Problem 4.1, items (a) and (b). Problem 4.1, item (a) is relevant in the context
of Theorem 3.2.

If there is a problem in finding fixed points of the transformation c, then this can be
explained by the complex conditions of the definition of the transformation « (i.e. it is
difficult to find images of elements under the action of this transformation). In order for
the difficulties in working with the transformation « not to transfer to working with the
groupoid in which the work with the bipolar type of endomorphism « will take place, it is
necessary to be able to work in a groupoid, all left translations of which are different from
the transformation « itself. This explains the interest in Problem 4.1, point (c).

There are situations when the transformation « is specified by simple conditions (i.e.
there is no fundamental difficulty in finding the a-images of elements). But the method of
specifying the transformation « is not convenient for solving the corresponding equations.
For example, the Riemann zeta function can be attributed to such partial transformations
(partial transformations can be reduced to ordinary transformations of a new set). The
Riemann zeta function is defined by fairly simple conditions and there is no fundamental
difficulty in calculating its values on specific complex numbers. At the same time, the
Riemann zeta function zeros hypothesis is associated with it (the function zeros and fixed
points are closely related, see the next section). The latter indicates that the Riemann zeta
function is simply inconvenient for solving equations written with its help.

Problem 4.1 is a general problem. It can be seen as a template for similar problems solved
for a particular set G and a particular transformation «. In this case, together with Theorem
3.1, the results of solving Problem 4.1 will be useful for finding fixed points of a particular
transformation «. Problem 4.1 can also be investigated in a general form. The results of
such investigations will be useful for solving Problem 4.1 for particular G and «. Partial
solutions of Problem 4.1 (i.e., not all groupoids with the required properties are found) can
also be useful in the context of Theorem 3.1. An element-wise description of a groupoid in
Problem 4.1 is any description of a groupoid that allows one to write out left translations
of this groupoid (i.e., to define its arithmetic).

For a particular groupoid G = (G, %), let Bte*(G) denote the subset of the set Bte(G)
defined by the equivalence: v € Bte*(G) < D(v) # @. For any groupoid G, the set Bte™(G)

A. V. Litavrin. On some universal criterion for a fixed point
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is not empty. Indeed, it always contains the first bipolar type A (i.e., A(g) = 1 for any
g€ @)

Problem 4.2. For a fixed groupoid G, give a description of the elements of set
Bte* (G).

Problem 4.2 is relevant in the context of Problem 1.1 (describing the monoid of all
endomorphisms) and Problem 1.2 (describing the group of all automorphisms) without
the condition of pairwise distinctness of left translations. Solving Problem 4.2 may cause
difficulties even for groupoids for which Problem 1.1 has been solved. In the context of
Theorem 3.1, the following proposition indicates the relevance of solving Problem 4.2.

Proposition 4.1. Let G = (G,x) be a groupoid with pairwise distinct left
translations, g € G be some element of G, and « be an endomorphism of G distinct from
the identity transformation. If the set Bte*(G) \ {A} does not contain a bipolar type v such
that v(g) = 1, then g is not a fized point of the endomorphism a.

Proof Since G is a groupoid with pairwise distinct left translations, the base
set of D(A) (of endomorphisms of the first bipolar type) consists only of the identity
transformation (this follows directly from Lemma 2.1). Therefore, the endomorphism «
from the conditions of the proposition is not contained in D(A). By the conditions of the
proposition, the endomorphism « is contained in the base set of endomorphisms D(v) such
that y(g) # 1 (hence, v(g) = 2). Therefore, g is not a fixed point of the endomorphism «.
Indeed, the latter follows from both Theorem 3.1 and Theorem 3.2 (independently). The
proposition is proved.

In this case, it is not important for us to know the bipolar type of the endomorphism «.
It is enough to know that « is an endomorphism of the groupoid G that is distinct from the
identity transformation. Problem 4.2 can be considered for specific groupoids G. It is also
relevant to study Problem 4.2 in the general case.

Let G = (G, %) be an arbitrary groupoid and A be the first bipolar type. Let us distinguish
subsets APriori(G, 1) and APriori(G,2) in the set G:

APriori(G,i) :=={g € G | ¥y € Bte*(G) \ {A} : ~(9) =i}, i=1,2.

The exclusion of the bipolar type A from the set Bte*(G) is done so that the set
APriori(G, 2) can be calculated. The base set of endomorphisms of the first type is always
non-empty. Therefore, if we do not remove the first bipolar type from the conditions
introducing APriori(G, 2), then APriori(G, 2) will always be the empty set. The values of all
bipolar types from Bte*(G)\ {A} on elements of APriori(G,2) and APriori(G, 2) are known
a priori. Indeed, this follows directly from the definition of these sets.

Problem 4.3. For a fized groupoid G, give an element-wise description of the sets
APriori(G, 1) and APriori(G,2).

The solution of the above problem can be difficult even if we know the element-wise
description of the monoid of all endomorphisms of the groupoid G.

JluraBpun A. B.. O6 ogHOM yHHUBEPCAJIbHOM KPUTEPHUH HEIOJBHXKHOH TOYKH



2Kypnais CpemHeBosKCKOro MareMarnieckoro obmecrsa. 2025. T. 27, Ne 1. 43

Problem 4.4. For a fivred set G and a fized transformation a of set G, solve the
following problems:

(a) For a fized set H C G, give a description of all groupoids S = (G, ) from Gru(G, «)
such that H C APriori(S,1).

(b) For a fived set H C G, give a description of all groupoids S = (G, x) from Gru(G, «)
such that H C APriori(S, 2).

In Example 3.1 we used the fact that the neutral element of a group is a fixed point
for any endomorphism. Hence, e € APriori(G,1) when G is a group. Thus, successes in
solving Problems 4.3 and 4.4 will allow us to construct (or select, if there are successes in
solving Problem 4.1) groupoids from the conditions of Theorem 3.1 (analogously to Theorem
3.2) such that the analysis of the condition I',(g) = 1 (analogously to T',(g) = 2) will be
significantly simplified. Successes in investigating Problem 4.4, item (a), are not necessarily
necessary to lead to success in investigating item (b), and vice versa.

In [11], the possibility of computing the bipolar type of the composition ¢ - ¢ of two
endomorphisms ¢ and 9 of some groupoid G is investigated using the bipolar types I'y and
Ty (i.e., it is necessary to compute I ., without computing the composition ¢-1). In [11], the
concept of alternating pair of endomorphisms arises. Thus, a pair of endomorphisms (¢, ¢)
of a groupoid G is called alternating if for any g € G the condition (I's(g),T'y(¢(9))) # (2,2)
is satisfied. For every alternating pair of endomorphisms, the equality I's.,,(9) = I's(g) X
I'y(é(g)) holds, where (x) is the product of two natural numbers (see Theorem 2 in [11]).
For non-alternating pairs of endomorphisms, the above equality obviously does not hold
(since the values of the bipolar type on an element are 1 or 2). In the context of this result,
the following general problem is of interest.

Problem 4.5. Let G = (G,*) be an arbitrary groupoid and (¢, $) be an arbitrary
non-alternating pair of endomorphisms of the groupoid G. For all g € G such that the

equality (Ty(9),Ty(6(9))) = (2,2) holds, compute T'4.,,(g).

Example 1 of [11] suggests that the solution to Problem 4.5 will be considerably more
difficult than the analogous result for alternating pairs of endomorphisms. The solution
to Problem 4.5 provides additional properties that allow one to calculate the value of the
bipolar type of an arbitrary endomorphism on elements of a groupoid. Therefore, progress
in the study of Problem 4.5 may be useful in the context of Theorems 3.1 and 3.2.

Remark 4.1. Each of Problems 4.1-4.5 can be solved for specific parameters (for
example, a specific G and a specific «) that define the problem (let’s call such solutions —
particular solutions). These problems can also be solved in the general case. In the latter
case, it is necessary to use systems of mathematical objects that allow working with arbitrary
groupoids. Problems 4.1-4.5 in the general case can be solved differently (i.e., the solution
will be implemented using different systems of mathematical objects). In the context of
Theorem 3.1, different solutions to one problem can be relevant. Thus, one solution is
conveniently applied to one class of specific problems, and another solution to another class.
The latter also applies to the general Problems 1.1 and 1.2.

Remark 4.2. Corollaries 5.1 and 5.2 from the next section indicate a direct
connection between Problems 4.1-4.4 and the Riemann hypothesis on the zeros of the zeta
function.
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5. Riemann’s hypothesis on the zeros of the zeta function

In this section, Theorem 5.1 will be formulated and proved. We will preface this Theorem
with the necessary theoretical information about the zeta function and Lemma 5.1.

The Riemann zeta function ((s) is defined for any s € C except for the number s = 1.
Therefore, the zeta function ((s) is a partial transformation of the set C. If {z} := x — [z] is
the fractional part of a number x € R, then the values of the zeta function can be obtained
from the equalities (see paper [12]):

+oo 1
() =3 & Re(s)> 1
n=1
+oo
o) = ws [ M 0<re <1 s 2L (5.1)

Information on the values of the zeta function on other complex numbers are not required
in this paper. This information can be found, for example, in the papers: [12],[13],[14] and
[15]. Other methods for calculating the zeta function values can also be found there.

Non-trivial zeros of the zeta function ¢ are the zeros of ¢ that lie in the strip 0 < Re(s
(this set of complex numbers is called the critical strip). The line {s € C | Re(s) =
called the critical line.

<1
%} is

Riemann Hypothesis. All non-trivial zeros of the Riemann zeta function lie on the
critical line.

If z is a zero of the zeta function, then the zeros of the zeta function are complex numbers:
1—2,%Z,1 —Z (see [12]). The zeros of the zeta function do not lie on the lines: Re(s) = 0
and Re(s) = 1. The absence of zeros of the zeta function on the line Re(s) = 1 follows from
Theorem 7.1 in the review paper [15]. If the line Re(s) = 0 contains a zero z = it of the
zeta function, then 1 —z =1 — (0 +4t) = 1 — it is a zero of the zeta function. The latter
is impossible, in view of what was said above. Thus, to study the Riemann hypothesis, it
will be sufficient for us to define the zeta function ¢ on the set 0 < Re(s) < 1 (for example,
using the relation (5.1)).

Auxiliary set and transformation. Next, we introduce the set C° and the
transformation © on it, which will help us apply Theorem 3.1 to study the properties of the
zeros of the zeta function.

By ¢ we denote the symbol, which by definition is not a complex number. Next, we
introduce the set C° := C U {o}. As usual, (\) is the difference of sets. On the set C°, we
define the transformation

_ Jd(s)+s se{seC|0<Re(s) <1}
6(s) '_{ o, s€C°\{s€C|0<Re(s) <1}. (52)

The mapping O(s) is a transformation of the set C°. It follows from (5.2) that o is a
fixed point of the transformation O(s). For any complex number s from the set {s € C | 0 <
Re(s) < 1} the following implications hold:

C(s)=0 = O(s)=((s)+s=s, O(s)=s = ((s)+s=s = ((s)=0.
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Therefore, the point s € {s € C | 0 < Re(s) < 1} is a fixed point of © if and only if it is
a nontrivial zero of the Riemann zeta function ((s). The connection between a fixed point
of a function and a zero of the function used above is well known in analysis. Since ¢ by
definition does not belong to the set C, then for any point s € C\ {s € C | 0 < Re(s) < 1}
the condition O(s) # s holds. Thus, the following lemma is proved.

Lemma 5.1. Every fized point of © is either ¢ or a nontrivial zero of the Riemann
zeta function. Every nontrivial zero of the Riemann zeta function is a fixed point of ©.

Theorem 5.1. The Riemann Hypothesis is true if and only if the following statements
hold.
1) There exists a groupoid (C°, x) with pairwise distinct left translations such that the
transformation © is an endomorphism of this groupoid.
2) For any point s € C° the following implications hold:

To(s) = 1= (Re(s) - ;) V(s =0, (Re(s) + ;) As#0)=To(s) =2,  (5.3)

where Tg is the bipolar endomorphism type © of the groupoid (C°, x).

P roof Suppose the Riemann hypothesis. Then for every nontrivial zero s of the
1

zeta function ¢ the equality Re(s) = 5 holds. By Lemma 5.1 the transformation © has
fixed points (at least one point: ¢). Therefore, by Theorem 3.1, there exists a groupoid
C° = (C°, %) with pairwise distinct left translations and an endomorphism ©. Moreover,
the equality I'g(s) = 1 holds if and only if s € C° is a fixed point of the endomorphism
O of the groupoid C° (the latter follows from Theorem 3.1). Since the fixed points of the
transformation © are exhausted by the nontrivial zeros of the zeta function and the symbol
o, then if s € C° is a fixed point of ©, then either s = ¢ or Re(s) = 3. Therefore, the first
implication (5.3) holds. This implication cannot be replaced by an equivalence, since the
critical line contains not only the zeros of the zeta function. The second implication of (5.3)
follows from the assumption that the Riemann hypothesis is true.

Let statements 1 and 2 from the statement of the current Theorem be true. Consequently,
any fixed point of the transformation © lies on the critical line or is a symbol of ¢ (deduced
from Theorem 3.1). Therefore, Lemma 5.1 implies that all nontrivial zeros of the zeta
function lie on the critical line (i.e., the Riemann hypothesis is true). The Theorem is proved.

The following corollaries follow from Theorem 5.1 and the definitions of the sets
Gru(G, a), APriori(S, 1), and Bte*(.59).

Corollary 5.1. If there exists a groupoid S € Gru(C°, ©) with pairwise distinct left
translations and there exists a set

HC{seC|0<Re(s) <1,Re(s) # %}7

such that H C APriori(S, 1), then the Riemann hypothesis does not hold.

If the premises of Corollary 5.1 hold, then there exist nontrivial zeros of the zeta function
that do not lie on the critical line. In this case, the Riemann hypothesis does not hold.

Corollary 5.2, If there exists a groupoid S € Gru(C°, ©) with pairwise distinct left
translations such that for any v € Bte(S) the implication

’yEBte*(S)\{A}:>(‘V’SE{SG(C|O<Re(s)<1}:'y(s):1:>Re(s):;),
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then the Riemann hypothesis holds.

If the premises of Corollary 5.2 hold, then there exists a groupoid S € Gru(C?, ®) with
pairwise distinct left translations such that all endomorphisms, except those lying in D(A), of
this groupoid have fixed points only on the critical line. Since S is a groupoid with pairwise
distinct left translations, the base set of endomorphisms D(A) contains only the identity
transformation. In this case, the Riemann Hypothesis holds.

Corollaries 5.1 and 5.2 demonstrate that the solution of Problems 3-6 for G = C° and
a = 0 is useful for investigating the Riemann Hypothesis.

If the Riemann hypothesis is not satisfied, then the existence of the groupoid S from
Corollary 5.1 does not follow. Similarly, the existence of the groupoid S from Corollary 5.1
does not follow from the Riemann hypothesis. At the same time, the author of this paper is
inclined to believe that the following hypotheses are satisfied.

Hypothesis 5.1. If the Riemann hypothesis is not satisfied, then the groupoid S
from Gru(C°,©) from the conditions of Corollary 5.1 exists.

Hypothesis 5.2. If the Riemann hypothesis is satisfied, then the groupoid S from
Gru(C®,0) from the conditions of Corollary 5.2 exists.
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