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of the generalized Fourier method in solving parabolic initial boundary value problems for
non-canonical regions.
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OPUZUH(l/LbHaﬂ cmambvsa

VIIK 517.951:517.955

CXO,ZLI/IMOCTI) MeToda (I)ypbe, CBA3aHHOTI'O C

OPTOTrOHAaJIbHBIMUI cIiaiiHaMu
B.JI. JIeourbesB

Canxm-Ilemepbypecruti noaumernuyeckuts ynusepcumem Iempa Beauxozo (Canxm-
Ilemepbype, Poccutickas Pedepavusn)

Awnnoranus. [Ipumenenne Teopun OPTOrOHAIBHBIX CILIAMHOB, CO3JJAHHON aBTOPOM JAHHON
CTaTbU U IIOJIyYHUBIIEHl Pa3BUTHE B IOCIEIHUE TPUIAIATH JIET, IIPUBEJIO K CYIIECTBEHHOMY
MPOrpeccy B aJITOPUTMAX Psifia IUCJEHHBIX U AHAJIUTUIECKUX METOIOB MEXaHUKU Jedop-
MHUPYEMOT'O TBEPJIOTO TeJla U MaTeMaTudecKoil dusmku. B gacTHOCTH, 000OIIEHHDBI METO
@ypbe, CBA3aHHBIN C HCIOJIH30BAHUEM KOHEYHBIX DsA/10B Pypbe M OPTOrOHAJBHBIX CILJIAi-
HOB, OBLII YCIIEIITHO MPUMEHEH paHee aBTOPOM JAHHON CTATHY IIPH PEIICHUH HapabOoInIecKuX
HAYAJIBbHO-KPAEBBIX 33/1a49 JJjIs 00/IacTell ¢ KPUBOJIMHEHHBIMI IPAHUIIAMHU. B HaHHO# cTaThe
IIpeJIaraeTcs JlajbHelilee pa3BUTHE U HOBOE BCECTOPOHHEE HCCJIEIOBAHIE AJITOPUTMA STOTO
merona Pypbe, IpeHASHATEHHOTO [T PEIIEHUS TapabOIMIeCKNX Ha9aIbHO-KPAEBbIX 33,11
B HEKAHOHUYECKMUX OOJIACTAX. DTOT METOJ, JaeT MPUO/IMKEHHbIE AHAJTUTUICCKHAE PEIIeHUs B
BHJIe KOHEYHOro psna Pypbe, CTPYKTypa KOTOPOI'O aHAJIOIMYHA CTPYKTYPE YACTHBIX CYMM
6eckonetHoro psita Pypwe Tounoro pemrenust. [lorHoe ncciemoBanne CXOAUMOCTH ITOIO Me-
TOJ1a, IPEJCTABICHHOE B TAHHOM CTAThe, OCHOBAHO Ha TEOPUH KOHEYHO-PA3HOCTHBIX METOIOB.
IIo Mepe yBenuyeHns 4ncsa y3j0B CETKU B 00JIaCTH Takue KOHedHble psaapl Pypbe npudiu-
2KAIOTCsl K TOYHOMY DeEIIeHHIO mapabosimdecKoil HadabHO-KpaeBoil 3amaqdn. VccnemoBanne
CXOJIMMOCTH TTOKa3bIBaeT 3(MPEKTUBHOCTH HOBOIO aJropuTMa 006001eHHoro merogaa Pypone
IIpU pelleHnn NapaboInyecKux HaYaJIbHO-KPAEBbIX 33184 JJIsI HEKAHOHMYECKUX OobJiacTeil.
KuroueBrsie ciioBa: napabonieckue Ha4aIbHO-KPaeBble 33/1a49l, KPUBOJINHENHAS I'PAHUIIA,
HEKAHOHWYECKHe 00JIACTH, METO/T, pa3/Ie/IeHsl IePEMEHHbBIX, KOHEUHBIE psiabl Pyphe, OpTOro-
HaJIbHBIC CILJIAHbBI

Hns nmurupoBanus: Jleoutses B.JI. Cxomumocts mertosna Pypbe, CBI3aHHOIO C OPTOroO-
nasababiMu ciutaitaamu // 2Kypraaa CpeaHeBOIKCKOTO MaTeMaTHIecKoro obmectsa. 2024.
T. 26, Ne 3. C. 245-259. DOI: https://doi.org/10.15507 /2079-6900.26.202403.245-259

06 asmope:

JIleontbeB BukTop JleoHTbeBUY, JJOKTOp (PUBMKO-MATEMATHYECKUX HAYK, IPpodeccop
Hay4Ho-ucciie1oBaTeIbCKOro IeHTpa MePeIoBbIX MU(POBBIX TEXHOJOTHI MUPOBOTO yPOBHSI
Cankr-IleTepGyprckoro mosmrexamaeckoro yausepeurera [lerpa Bemmkoro (195251, Cankr-
Ierepbypr, yi. [Homurexanyeckas, x. 29, murepa B), ORCID: http: //orcid.org/0000-0002-
8669-1919, leontiev_ vl@spbstu.ru

1. Introduction

The modified Fourier method [1] was proposed and investigated earlier [1] in parabolic
initial boundary value problems for regions with a noncanonical curvilinear boundaries.
The method [1] connected with explicit difference scheme is similar to another variant of
Fourier method connected with implicit difference scheme and proposed here. Convergence
of approximate analytic solutions was obtained in [1] only with respect to eigenvalues
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and functions in the framework of the Sturm-Liouville problem. Here is proposed full
investigation of convergence of approximate solutions obtained in form of finite Fourier series
for novel variant of Fourier method connected with orthogonal splines in parabolic initial
boundary value problems. An estimate is obtained, which shows a high rate of convergence
of such finite Fourier series to exact solutions of problems for regions with a noncanonical
curvilinear boundaries.

The method of separation of variables (Fourier method) allows finding solutions in
analytical form of many initial boundary value problems. The method is connected with
the Sturm-Liouville problem and in many cases of initial boundary value problems with
using of special functions. Implementation of classical Fourier method for many types of
initial boundary value problems, including problems to which all parts of the boundary
of a canonical region are coordinate lines or surfaces, meets with significant difficulties.
One way to expand the scope of the classical Fourier method is to solve mathematical
questions related to structure of boundary conditions [2]. Special functions appear in the
algorithm of the Fourier method when a Sturm-Liouville problem is solved in curvilinear
coordinate systems in cases of canonical regions whose boundaries are coordinate lines or
surfaces. In the general case of initial boundary value problems for noncanonical regions
with curvilinear boundaries, the use of special functions is inefficient. The classical Fourier
method is applicable only in initial boundary value problems for canonical regions of classical
shape, in particular, in solving contact problems [3] for elastic bodies. The applications of
the classical Fourier method are given, for example, in the articles [4-5].

Other directions of development of different methods for solving initial boundary value
problems for not canonical regions with curvilinear boundaries are associated, first, with the
application of other methods, for example [6-10], and, secondly, with a modification of the
Fourier method itself.

Finite difference methods [6-9] and finite element methods [10] have wide scopes. But
numerical methods [6-10] not give solutions in form of Fourier series.

Fourier series are used in many applications, in particular, [11-12]. Scope of spline
approximations, for example [13], also is enough wide. The generalized Fourier method
associated with the use of orthogonal splines was proposed for parabolic initial boundary
value problems in the article [1]. It gives solutions in form of finite Fourier series. This
method, thanks to orthogonal splines, has expanded scope which contains initial boundary
value problems for noncanonical regions with any curvilinear boundaries. Used in [1] and here
finite Fourier series, based on orthogonal splines, shows high efficiency [14] also in problems
of approximation of functions in regions with curvilinear boundaries and generates fast
algorithm of approximations.

The numerical solutions of some initial boundary value problems for noncanonical
regions with curvilinear boundaries shown high computational possibilities of the method
[1]. Investigations of the method [1] are continued here, efficiency of the similar
generalized Fourier method is demonstrated in parabolic initial boundary value problems
for noncanonical regions. The investigation of convergence of such method is proposed here.
This study is based on the theory of finite difference methods.

V. L. Leontiev. Convergence of Fourier Method connected with Orthogonal Splines



248 Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2024. Vol. 26, No. 3.

2. Problem Statement

The parabolic initial boundary value problem

L[u]:% V(z,y) €8, Vi>0;
0?u  9%*u
_ 2 .
Llu] = a (83:2 + 8y2> ) (2.1)

ul_g = e(z,y) V(2,9) €S;
Ulgg =0 V>0

is considered. Here 0S5 is a piecewise smooth curvilinear boundary of the not canonical
region S, u = wu(x,y,t) — a function, continuous ¥t > 0 in a closed region S = S + 95,
a? = const > 0.
The not canonical region S is, for the example, the circular region of radius R = 1 with
the hole cut out by the elliptical line
2 2
(x —0.6) LY
0.12 0.22
The boundary 95 of the not canonical region S in this case consists of a circle of radius
R =1 and a given ellipse.
In the general case, a not canonical region S with a curvilinear boundary S fits into a
rectangular region Q
Q={a<z<bc<y<d}.

An auxiliary initial boundary value problem
Ju
[u] = ot
U"t:o :90(3779) v (J"ay) 657
U‘BQ =0, u=0 VY (z,y) € (Q\S), Vt>0;

V(z,y) €S, Vit>0;
(2.2)

is also considered. This task is equivalent to task (2.1) in the region S.

3. Description of Method

According to the Fourier method, the solutions of the problems (2.1)—(2.2) is sought as
a product of two functions
w(@,y,t) = Ulz,y) - V(1)

Substitution of this product in (2.1)—(2.2) and separation of variables U,V leads to the
equation with the parameter A

%g+xvzo ¥i>0 (3.1)

and to the Sturm-Liouville problem

LU+ AU =0 (S), Ulys=0, (3.2)
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which connected with the problem (2.1), and also leads to the modified Sturm-Liouville
problem

LU+ XU =0 (9),
U=0 (Q\S); U|6Q =0,
which connected with the problem (2.2). The problems (3.2)-(3.3) are equivalent in the
region S.
The B-spline of first degree

(3.3)

%7 BE (i1, i) 5
bi (1) = MH%, 1€ (i prisn]

0, € (=00, pi—1) U (piv1, +00);
corresponds to node pu; of the grid. Coordinates of nodes
wi=—-1+14h; 0<i<N; h=2/N;

are defined here for constant step h and, for example, on [—1,1]. The compact support of
the spline b; (@) is [pi—1, pit1]. The B-spline of first degree

M, 1€ [pi1, pim1 + h/2];
bgf) (1) = V2[h — (1 — pri—1)]

s M€ [picr + h/2, i) 5
0, p € (—o0, pi—1) U (i, 00) 3

has the compact support [p;—1, t;]. The B-spline of first degree

w, € [y i + h/2];

b () =9 V3h — (1 — )]
h
0, p € (=00, i) U (pit1, +00);
has the compact support [u;, i+1]. The compactly supported functions

o 1€ (s +h/2, i ]

i (1) = bi () + 657 () + 057 ()

have properties
(@i, 25) = ll¢3]1* 035
and are orthogonal differentiable continuous splines [15] on each specific grid. It are piecewise
linear finite differentiable contituous functions. Here d;; — the Kronecker symbols.
The splines
vi(x) = @i (2), 95(y) = ¢; (¥)

where

S2)4
ng, (@i, 0j) = 0ij,

Yi = —
||<Pi
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are used in the approximation

r,y) = Z Zdij%‘(x)éj(y) (3.4)

i=0 j=0

of a solution of the problem (3.3) on a region Q. Here N, M are numbers of a grid respectively
for axes Oz, Oy; d;jare unknown constant coefficients.

A system of splines ¢; (x) on an infinite sequence of grids formed by a discrete decrease
of step h — 0 is complete and this system of splines approximates in Sobolev space W3 any
function U(x) of the Sobolev space W3 [15]:

N
U — Z CigOi
i=1

where C'is a constant which not depends on U, h; ¢;—some constant coefficients.

The coefficients d;;, corresponding to nodes placed in the region (Q\S) and on the
boundary 9@ are equal to zero, thus the sum (3.4) takes into account how the conditions
U = 0(Q\S5), so and the boundary conditions Uy, = 0. It is used that in accordance with
properties [15] of used splines each coefficient d;; is equal to a value of Uy (z,y) at the node
(xi,y;) of a grid in a region (Q\S).

The stationary condition

. / 8U1 LU MY o (OU N s~ (9 ) su, \ ass
y a2 535 ay

+ / UsUdQ + / U (nz0Uy + n,,6Us)dl + / USUdL=0 (3.5)
Q\S a8 aQ

< Ch Uy
wy

of the functional

F(U, UL, Usz) =

B oUu, 90U, AU oUu oU
_/S{[(aa? + ay)+ a2}U—<ax _U1>U1_(5y —U2>U2}d5+

+/ U2dQ+/ U(Ulnm—&-Ugny)dl—k/ UZ%dl, (3.6)
Q\S s aQ

is used for determination of the coefficients d;; of the approximate analytical solution (3.4).

Here oU aU
87 = Ula aiy

Ng, Ny are components of external normal to a boundary 95.
The condition (3.5) is equivalent to

= U2 (S),

ou,  OU, -
ou ou
% — U1, aiy - U2 (S)v
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U=0 (Q\5); Ulyps =0, Ulyg =0 (3.7)

because variations §U and 60Uy, 6Us are independent and arbitrary in S, 95, Q\S and on 9Q.
The condition Ul,q = 0 follows from the condition U =0 (Q\S), therefore, equations and
conditions (3.7) after exclusion Uy, Us are written as (3.3).

To obtain an approximate analytical solution of the problem (2.2) on a region Q, into
which the region S fits, a uniform grid with steps hi, hy is constructed.

Substitution (3.4) into the condition (3.5) leads to a system of finite difference equations

Un m_2Unm Unf m Unm _2Unm Unmf
o2 | Yt T Un-tm | Ynmi1 + Un,m—1

ApUpm =0, 3.8
Um =0 (Q\S); Upm =0 (0Q). (3.9)
The equation (3.1) is presented in next finite difference form
Vl+1 _ Vl
by +1 =0. 1
AT + AV 0 (3.10)

The exception A, from finite difference equations (3.8), (3.10), taken in pairs for each
internal node of the region S, gives for the node (,,y), taking into account that u!, =
Uanl, the finite difference equation

2/ A1+1 +1 Al
a (Anm,xu + Anm,yu) - Anm,tu (S)’ (311)
where - l -
_ +1
Al+1 _ Up41,m 2unm + Up—1,m
nm,a:u - h2 )
1
I+1 I+1 I+1
Al+1 _ Unm+1 — 2U’nm + Up m—1
nm,yu - h2 )
2
+1 l
Al _ Ynm T Upm
nmﬂfu - At

— finite-difference operators on a uniform grid with steps hi, ho for the directions Oz, Oy
respectively and with a step At of a grid of time.
Nodes of the grid, for example, on

Q={-1<z<1;-1<y<1}
have coordinates
(.’L‘i = —1+ih,yj = —1+jh) GQ, 0<i4,j5<N.

The conditions
U =0 (Q\S), ub,, =0 (0Q) (3.12)

containing a boundary condition

ul, =0 (99),

nm

V. L. Leontiev. Convergence of Fourier Method connected with Orthogonal Splines
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are added to the system of equations (3.11).
The equations and the conditions (3.11)—(3.12) are considered together with the initial
condition (2.2), written in nodes of a grid

uﬁlm|n:0 = o(Tn, Ym) YV (Xn, Ym) € S. (3.13)

Solving a system of grid equations and conditions (3.11)—(3.13) for a given sequence of
time values t; gives the values u!,,, of a numerical solution in all nodes of the grid in a region
Q for given points of time.

Solutions of problems (3.1), (3.2) or (3.3) have next form within the framework of the
classical Fourier method

K
u T (z,y,t) = Z .Y), (3.14)

where the functions V, Uj(f ) correspond to eigenvalues Ag(k = 1,...,K) of the Sturm-

Liouville problems (3.2)—(3.3). Functions Vj,, U ](\f ) are formed as result of solving of a system
of finite-difference equations (3.10)—(3.11) together with (3.12)- (3.13). The finite series
(3.14) are Fourier series generated by orthogonal splines for all nodal values t; of time, but
Fourier series (3.14) are formed here immediately for used grids and for nodal values of
time in a final form without first determining the eigenvalues A; and functions UJ(\;C ), what is
possible thanks to the use of orthogonal splines. Solutions of the systems of equations (3.10)—
(3.13) gives values of solutions in nodes of a grid in regions S, @ at defined moments t; of
time and these nodal values are equal to coefficients d,; of finite series (3.4). Such solutions
in form of finite Fourier series are followed from (3.10)—(3.13) for every set moments t; of
time.

General solutions of differential equations (3.1) within the framework of the classical
Fourier method have the form

Vi(t) = Apexp(—Apt),  (k=1,..,K); (3.15)

where A;, are unknown constant coefficients.
The sum (3.14), taking into account (3.4), (3.15), has the form

K N M
u ) (z,y,t) Z A exp(—At) Z Z dgf)% (x)0;(y) (3.16)
k=1 i=0 j=0

on each given grid in regions S, Q.
Substituting (3.16) into the initial condition (2.1)—(2.2) gives an equation, after
multiplying both parts of which by U](\f )(x, y) for a fixed value k and integrating it over the

region S, taking into account the orthogonality of the eigenfunctions, the formula appears

_ Jfs el U (@ y)dS
Jose

(3.17)

Thus, the sum (3.16), whose coefficients Ay are determined by formula (3.17), satisfies
equation (3.3) in variational form, equation (3.1), as well as boundary condition (3.3) and
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initial condition (2.1)—(2.2). The sums (3.16) for different values of N, M are approximate
analytical solutions of equivalent parabolic problems (2.1)—(2.2) in regions S, Q.

For given fixed values of time, sums (3.16) represent finite generalized Fourier series which
are approximate analytical solutions of boundary value problems (2.1)—(2.2) in regions S, Q,
and also are finite generalized Fourier series generated by orthogonal splines.

The solution (3.16) is written at moments ¢; of time in the form

ul) (2, y, 1) = Yo S g ubvi(2)8;(y),

(3.18)
uij = Zszl A eXp(—)\ktl)dl(-f)} .

4. Convergence of Method

The convergence investigation of the proposed method uses here the theory of finite
difference schemes [16-17].

Theorem 4.1. The solutions (3.16), (3.18) of the parabolic initial boundary value
problem (2.2) converge to an evact solution u of the problem (2.2) in a region Q and to an
exact solution of the problem (2.1) in a region S, if

h = max(hq, hz)

and
At = ah® a = const > 0.

The inequality
o], <w
WO

h,2

determinates rate of convergence of numerical solutions ul,,, in (3.18). Here, the Sobolev
space Wf?,z on grid which is defined by the norm

1/2
N M /

2
s = (2233 Jutwions)

i=0 j=0
associated with a grid in a region Q.
Proof. Approximation of differential equations. The next notations are used
(Tns Ymy 1) = Xnymits  (Tns Yo tir1) = Xnm,i41-

If continuous partial derivatives of a function u(x,y,t) of the fourth order in coordinates
and the first order in time are existed, then the Taylor formula gives

V. L. Leontiev. Convergence of Fourier Method connected with Orthogonal Splines
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I+1 I+1
Al+1 _ unil,m - 211,{(;;% + untl,m o
nm,zu - h2 -
1
_ U(I’n + hlaymatl-‘rl) B 2U(:L‘n, yM7tl+1) + u(xn - hl,ym,tl—i-l) _
h?
1 { SIS ou h? 8%u h3 93u hi 9*u n
=12 nm 192 91 92 a9 973 Al 94
hl ax Xn,m,l+1 2' ax Xn,m,l+1 3‘ 83; Xn,m,l+1 4' ax Xn,m,l+1
ou h? 0%u h3 03u
+o<h;*>] Coudfh o adfh = 2 T I il
Oz Xn,m,l4+1 2! O Xn,m,l+1 3! O Xn,m,l+1
hi 0*u 4 0%u h? 0*u 9
i ot Tolh)| (= Gz 12001 olhi) =
: Xn,m,l+1 Xn,m,l+1 Xn,m,l+1
0%u 9
= @ +O(h1) (4.1)
Xn,m,l+1
and also
I+1 l
Al+1 _ unferl - 2’11,%—’;7% + unJ,rrilfl
nm,y = h2 -
2
_ U(fn,ym + h2at1+1) - ZU(fﬂn, ym,tl+1) + U(xmym - h27tl+1) _
h3
1 { 1 ou h3 0%u h3 93u h3 0*u .
=72 Unm 25 91 99,2 2l 9.3 Al 9.4
hl 8y Xn,m,l+1 2' ay Xn,m,l+1 3‘ 6y Xn,m,l+1 4' ay Xn,m,l+1
ou h3 8%u h3 03u
Xn,m,l+1 ' Y Xn,m,l+1 ' Y Xn,m,l+1
hs 0%u 4 0%u h3 0*u 2
TR +o(ha)| ¢ = 53 E iy +o(h3) =
4 2 4
4l ay Xn,m,l+1 8y Xn,m,l+1 12 8y Xn,m,l+1
0%u
=52 +O0(h3) (4.2)
Y Xn,m,l+1
and
A ue ultl — b _ W(Try Yy b + AL) — w(Tp, Y, t1) _
st At At
1|, ou (At)? 0%u 5 !
= — At— — At)%)| — === =
A [tnm T RG] el G
Xn,m,l Xn,m,l
0
== L O(AY).  (4.3)
at Xn,m,l

The formulas (4.1)— (4.3) show that the finite difference equations

a2(Al+1 u -+ Al+1 u) = Aiv,m,tu (S)7

nm,x nm,y
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approximate the equation

02 02 0
L[u]—az(axgway;‘)—a;‘ V(eyeS Vixo (4.4)

in nodes of a grid with errors, magnitudes of which have the order
a’[O(h}) + O(h3)] + O(At).

If h = max(hi, ho) and At = ah?, o = const > 0, then the order of approximation of the
differential equation (4.4) in all nodes of the region S is determined by O(h?).

The differential equation (4.4) will be considered in an entire region @, which is consistent
with the equation

u=0 (Q\5),

since taking this condition into account in the equation (4.4) turn it into an identity within
the region (Q\S). Also the finite difference equations (3.11) are extended to an entire region
Q. The finite difference equations (3.11) turn into identities in all nodes of the grid located
in a region (Q\S). Thus, the finite difference equations (3.11) approximate the differential
equation (4.4) in the region (Q\S) without errors. The boundary and initial conditions (2.2)
are approximated by (3.12) and (3.13) in the grid nodes without errors. Consequently, the
finite difference equations (3.11) together with a boundary condition (3.12) and together
with an initial condition (3.13) approximate the problem (2.2) in a region () with an error
of an order O(h?).

Stability of solutions of finite difference equations. It is widely known [16, Chapter 6; 17,
Chapter 8| that the system of the finite difference equations

a®(ALFL w4 AL ) = Aflm)tu

nm,x nm,y

is characterized by absolute stability in the rectangular region Q.

Convergence of solutions of finite difference equations. Finite difference equations (3.11),
together with boundary condition (3.12) and together with the initial condition (3.13),
approximate the problem (2.2) in a region ) with an error of the order O(h?). The system
of these finite difference equations in the rectangular region @ is characterized by absolute
stability [16-17].

This means [17, Chapter 5| convergence

Hufu(K)H < C1h?
W
of values in grid nodes of a sequence of approximate solutions %) to an exact solution u
when a grid step h decreases. Here C is some positive constant coefficient.

End of the proof.

From the convergence of numerical solutions uéj of finite difference equations (3.11)
obtained at grid nodes at specified time points follows the convergence of a sequence of
analytical approximate solutions in the form of finite Fourier series (3.18). The inequality

Hu—u(K)H < Coh? (4.5)

defines this convergence. Here Cs is some positive constant coefficient, Wg(Q) is the Sobolev
space.
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Problems (2.1), (2.2) are equivalent in the region S, so

Hu—u(K)H < C3h? (4.6)
wo(s)

follows from (4.5). Here C5 is some positive constant coefficient.

5. Conclusion

The convergence of the modified Fourier method was investigated in [1] in a parabolic
initial boundary value problem for a region with a noncanonical curvilinear boundary.
The theory of finite difference equations was not used for investigation of convergence.
Convergence conclusions in general case were obtained in [1] only with respect to eigenvalues
and functions in the framework of the Sturm-Liouville problem. The modified Fourier
method [1] connected with explicit difference scheme is similar to another variant of Fourier
method connected with orthogonal splines proposed and investigated here and connected
with implicit difference scheme.

The estimate (4.6) obtained here shows a high rate of convergence of finite Fourier series
(3.16), (3.18) to an exact solution of problems (2.1)—(2.2) for a region S with a curvilinear
boundary 95. The approximate solutions (3.16), (3.18), in contrast to the solutions obtained
in such problems without using the Fourier method using the finite difference method or
the finite element method, have the analytical form of Fourier series characteristic of the
Fourier method. The algorithm of modified Fourier method considered in this article is
associated with the use of the orthogonal splines and allows finding solutions to parabolic
initial boundary value problems for non-canonical regions in the general case of their curved
multi-connected boundaries.

The investigation realized here for any numbers of grid nodes demonstrated that
approximate solutions (3.16), (3.18) converge to known exact solution. For example,
approximate solutions (3.16), (3.18) of problems (2.1)—(2.2) for the circular region of radius
R =1 with the hole cut out by the elliptical line

2 2
(x —0.6) LY

0.12 0.22
converge to exact solution.

The theoretical studies of convergence which were made here and in [1] show high
accuracy of approximate analytical solutions in form of finite Fourier series.

Expanding of regions of application of classical analytical methods of solving initial
boundary value problems is an actual problem. One of the directions of development of such
methods is presented in [1] and here, where the methods of separating of variables described
to solve hyperbolic and parabolic initial boundary value problems for not canonical regions.
These methods give solutions in the form of finite generalized Fourier series, which converge
to exact solutions. The methods pull together numerical methods for solving initial boundary
value problems with an analytical method for solving them.The use of orthogonal splines
brings together numerical and analytical methods - finite difference methods and the Fourier
method, expanding the scope of their applications.

In the method proposed here the potential capabilities of the method of separation of
variables, orthogonal splines, and the finite difference method are used together, it leads
to analytical solutions in the form of finite Fourier series. The theoretical investigation of
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the convergence presented here shows that the modified Fourier method gives approximate
analytical solutions to parabolic initial boundary value problems in the form of finite Fourier
series with high accuracy.
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