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T'NMPOCKOIINYIECKNX CHJI
A. Kocos, 9. UI. Cemenos

Hremumym dunamury cucmem u meopuu ynpasienus umenu B. M. Mampocosa
Cubupcrozo omdeserus Poccutickoli axademuu nayk (2. Hprymex, Poccutickas De-
depayusi)

1.

Anvotamusa. Paccmorpena cucrema jmddepeHnuaabHbIX YPaBHEHUA, OIMUCHIBAIOIIAT
JIBUZKEHNE THPOCTATa IIOJ JEHCTBHEM MOMEHTa IMOTEHIIMAIbHBIX, T'HPOCKOIHMYECKUX U
MUPKYJISIPHO-TUPOCKOMTMIECKAX CHJI. Y Ka3aH BUJ MOMEHTA CHJI, TPU KOTOPOM CHCTEMA MMEET
TPHU HEPBBIX MHTErpaja 3aJaHHoro Buja. [IpuBogurcsa anasor teopembl B. V. 3y6osa st
[IpEe/ICTaBJIEHNs] PEIeHNI YypaBHEHHU T'UpOCTaTa CTEIIEHHBIMY PSJIAMHA M TTOKA3aHA BO3MOXK-
HOCTh NIPUMEHEHUsI TAKOTO MOIX0a JjIs MIPOTHO3UPOBAaHUS ABHKeHuit. [l anasora ciaydast
Jlarpanka NpOM3BOJUTCS MHTEIPUPOBAHME B KBaJpaTypax. TakyKe yKa3aHbl aHAJIOIH CJLy-
Jasl MOJIHOM JTUHAMUYECKON cuMMeTpun U cirydast [ecca. Ha ocHOBe mpuHITUIIA ONITHMAJIBEHOTO
nemndgupoBanusi, paspaboranroro B. . 3yboBeiM, mpeiokeHa KOHCTPYKIUS YIIPABJISIO-
I[Ero MOMEHTA, CO3/aBaeMOr0 IUPKYJISPHO-TUPOCKOIIMYECKUMU CHJIAMU, O0eCIieunBalioIiast
BBIXO/, OJIHOI 13 KOODJMHAT Ha HOCTOSIHHYIO (XOTsI M HEM3BECTHYIO 3apaHee) BeJUIMHY WU
epexo/i BEKTOPa COCTOSTHUST Ha MTOBEPXHOCTh YPOBHsT YacTHOrO mHTEerpasia l'ecca. [Ipusenen
YUCJIOBOI MIPUMED, [IJIsi KOTOPOr'o HANJEHO JBYXIAPAMETPUIECKOe CEMEHCTBO TOUYHBIX MTOYTH
[MEPUOTUYECKUX PEIIEHUMN, TIPEICTABIEHHBIX TPUTOHOMETPUIESCKUMU (DYHKITUSIMU.
KuroueBbie ciioBa: rupocTaT, MOMEHT MOTEHIIUAIBHBIX U TMPOCKOIMUYECKUX CHUJI, TIepPBbIE
HMHTErpaJibl, THTEIPUPYEMOCTb, TOUYHBIE DEIIeHUs, AHAJOTU KJIACCUYECKUX CJIy4YaeB, yIpaB-
JieHue

s muruposanusi: Kocop A.A., Cemenos O.U. O gsmxkeHum rupocTara WOJ Ieii-
CTBHEM MOTEHIMAIBHBIX U rmpockonudeckux cuit // 2Kypnaan CpeHeBOIZKCKOrO MaTeMa-
Tudeckoro obmecrsa. 2022. T. 24, Ne 1. C. 66-75. DOI: https://doi.org/10.15507/2079-
6900.24.202201.66-75
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Introduction

The system of nonlinear differential equations describing the motion of a heavy solid
body near a fixed point was obtained by L.Euler in the middle of the XVIII century and for
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a long time was an inspiring object for deep research of outstanding mathematicians and
mechanics. Classical cases of integrability of this system have been found (cases of Euler,
Lagrange and Kowalevski), for which there is an additional fourth algebraic first integral
and it has been proved that if the conditions of these classical cases are not fulfilled, the
additional integral does not exist even in the class of analytical functions (detailed history of
research and overview of results can be found in monographs [1],[2],[3]), as well as in review
article [4].

After the discovery of the Kowalevski integral, cases of existence of an additional
particular integral were also found, when it is not possible to fully integrate equations,
but it is possible to obtain separate private solutions [2]. Among them is the case of Hess,
characterized by the existence of an additional linear particular integral, which was found
for the equations of heavy solid motion in 1890 [1],[2]. Various issues related to the Hess
case, its development and generalizations were examined in [5].

The classical Lagrange case for equations of motion of a heavy solid with a fixed point
is highlighted by conditions of coincidence of two moments of inertia and linear dependence
of a potential function on only one angle [1]. For the system discussed herein, it will also be
necessary to impose additional conditions on the hyrostatic moment vector A, the matrix S
and the function L(¢,v,w).

The classical case of full dynamic symmetry for the equations of motion of a heavy
solid with a fixed point is highlighted by the conditions of coincidence of all three moments
of inertia and linear dependence of the potential function on the angles of orientation,
and the special choice of coordinate system is reduced to the Lagrange case [1]. For the
system discussed in this article, which simulates the movement of hyrostate under the action
of potential, gyroscopic and circular-gyroscopic forces, it will also be necessary to impose
additional conditions on the vector of hyrostatic moment and parameters characterizing the
moment created by gyroscopic and circular-gyroscopic forces. Therefore, a reduction to a
case similar to the Lagrange case is not guaranteed by simply choosing a coordinate system
here. Note that the case of complete dynamic symmetry is of interest and continues to be
studied for the purpose of constructing solutions and integrals, for example in [6] for a solid
with a spherical ellipsoid of inertia and constant moment, exact analytical solutions have
been obtained.

2. Motion Equations and First Integrals

Consider the vector form of the equations of motion of a hyrostate with a fixed point
under the influence of the moment of forces

Io=(Iw+ ) xw+ M, (2.1)

J=Xw. (2.2)

Here w = col(p, ¢, ) — the angular velocity vector, v = col(y1, vz, v3) — the unit vector of the
symmetry axis of the force field, given by projections on the axis of the associated coordinate
system, I = I” > 0 — the symmetric positive — definite matrix of the inertia tensor relative
to a fixed point, A = col(A1, A2, A3) — the gyrostatic moment vector, M = M(¢,7y,w) — the
moment vector of forces acting on gyrostat. Following [7],[8],[9],[10], we will consider the
following functions and relations as the first integrals

Ji = Ji(v,w) = wlTw + 2U(v) = d; = const, (2.3)

A. A. Kocos, 3. U. Cemenos. O JBUXKEHUH M'IPOCTATa MO J€iCTBUEM HOTEHIHAJIbHBIX U THPOCKOIIMYECKHX . . .



2Kypnuas CpeHeBOIKCKOTO MaTeMaTndeckoro obriecrsa. 2022. T. 24, Ne 1. 69

1
Jy = Jo(v,w) =T (Iw + N\ + 3 TS~ = dy = const, (2.4)

Jy=Js(y) =7"y =1 (2.5)

where S = ST is some symmetric matrix. The following assertion was proved in [11].

Theorem 2.1. In order for the functions (2.3)—(2.5) to be the first integrals for
the system (2.1), (2.2) it is necessary and sufficient for the moment M to be represented as

M:'yxg—g—w><S’}/—i—L(t,’y,w)w><’y7 (2.6)

where L(t,v,w) is an arbitrary function.

This statement shows that the first integrals (2.3) and (2.4) determine the moment
M in the right part of (2.1) in a unique way up to the circular-gyroscopic component
L(t,v,w)w x . The first term in formula (2.6) is the moment of potential forces, and the
second is the moment of gyroscopic forces.

Next, we will consider the inertia matrix diagonal I = diag(A, B,C). Let’s write the
system (2.1), (2.2) and the first integrals in coordinate form

. oUu oU
Ap= (B —=C)gr+Xar —A3q +v25— — 35— — q(57)3 +7(57)2 + L(gy3 — m72),
O3 072
. ou oU
BG=(C—A)pr+Adsp— r+y——v1=— —7(57)1 +p(Sv)s+ (2.7)
om 03
+L(ry1 — pys)s
) oU oU
Ci= (A= B)pg+ Mg — Xap + 15— — 27— — p(S¥)2 + q(S7)1 + L(py2 — qm)s
8’)/2 8’}/1
YI=TY2—qY3, V2=DPY3 =TV, V3 =qV1 — P2 (2.8)
Ji = Ap* + B¢* + Cr® 42U (y) = d; = const, (2.9)
JQ = 'Yl(Ap + )\1) + "YQ(Bq + )\2) + ’Yg(CT’ + )\3)4’
1
+§ (811712 + s2273 + 333’73%) + 8127172 + $137173 + S237273 = d2 = const, (2.10)
Js=v+7v+7v =1 (2.11)

Here (S+); means the i-th component of the vector Sv. The right parts of the system (2.7),
(2.8) are independent of those variables whose derivatives are present in the left parts, so
Jacobi ’s integration theory applies to this system. Where there is an additional independent
of (2.9)—(2.11) the first integral, this system is integrable.

The main purpose of this article is to use an analogy with classical integrability cases
for heavy solid equations to identify cases of the existence of an additional first integral and
perform integration of the system (9), (10). This problem is considered and solved for the
analog of the Lagrange case. Analogs for the case of complete dynamic symmetry and the
Hess case are also identified, for which the conditions for the existence of General and partial
integrals are obtained, respectively.
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3. Analog of Zubov’s theorem on analytical solutions

For the equations of motion of a heavy solid described by the system (2.7), (2.8) in the
case of S =0, A = 0, L(t,7,w) = 0 and the linear function U(v), V. I. Zubov proved [3]
the theorem that all real solutions are defined on the entire real axis and are represented
by power series converging also on the entire real axis. The proof is essentially based on the
properties of boundedness of all solutions and uniform analyticity of the right parts of the
system of differential equations under consideration. Having provided these properties, we
come to the validity of the analog of Zubov’s theorem for the gyrostat equations.

Theorem 3.1. If the functions U(vy) and L = L(v,w) are uniformly analytic in
each bounded region of the phase space (v,w), then all solutions of the system (2.7), (2.8)
are defined and bounded on the entire real axis t € (—oo,+00) and are represented by power
series convergent for all t € (—o0, 4+00)

+00 +o00 +00
=Y et q() =D, () =) ek,
k=0 k=0 k=0
Z%kiﬁ »ove(t Z’Yzld/) ;o st Z’Yskiﬁk

exp(ut) — 1

H =
ere ¢ exp(put) +17

w=m/2h, h >0 — is some constant.

For practical construction of series representing solutions, analytical computing systems
can be successfully used. For qualitative analysis of the properties of solutions (for example,
stability) over infinite or sufficiently long time intervals, such series are not applicable.
However, they can be very useful for predicting movement over short time intervals if it is
possible to measure the current state vector (y(t),w(t)). In this case, the depth of forecasting
for the future ¢ € (¢t,t 4+ 7), 7 > 0 can be estimated fairly accurately by comparing for the
segment £ € (t — 7,t) of the constructed power series with the solution (y(£),w(€)) already
known at the moment t € (—oo, +00).

4. Analog to the Lagrange case

The classical Lagrange case for equations of motion of a heavy solid body with a fixed
point is distinguished by the conditions of coincidence of two moments of inertia B = A
and the linear dependence of the potential function on only one angle U(y) = kv3 [1]. For
the system (2.7), (2.8) considered here, it is also necessary to impose additional conditions
on the gyrostatic moment vector A, the matrix S, and the function L(t,~,w). The following
statement is true.

Theorem 4.1. Let the following conditions be met for the system (2.7), (2.8):
1. B=A, A1 =X=0.
2. Function L(t,~y,w) is constant, i.e. L(t,v,w) = L = const.

3. Matriz S is diagonal S = diag(s11, S22, S33), With so9 = s11.

A. A. Kocos, 3. U. Cemenos. O JBUXKEHUH M'IPOCTATa MO J€iCTBUEM HOTEHIHAJIbHBIX U THPOCKOIIMYECKHX . . .
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4. Function U(7y) is an arbitrary continuously differentiable function of two arguments
U(y) = U(0,73), where o = 2 + 3.

Then the system (2.7), (2.8) has in addition to integrals (2.9)—(2.11) an additional first
integral
Jy =Cr+ (L — s11)y3 = dg = const (4.1)

and s integrated in quadratures.

Remark 4.1. If L = s11 + f(y3) where f(v3) is some continuous function and all
other conditions of statement 4.1 are met, then the additional integral instead of (4.1) has

3
the form Jy = Cr + [ f(y)dy and statement 4.1 remains valid.
0

5. Analog of the case of complete dynamic symmetry

The classical case of complete dynamic symmetry for equations of motion of a heavy solid
with a fixed point is distinguished by the conditions of coincidence of all three moments of
inertia A = B = (' and the linear dependence of the potential function U () on the angles [1].
For the system(2.7), (2.8) considered here, it is also necessary to impose additional conditions
on the gyrostatic moment vector A, the matrix S, and the function L(t,~y,w). The following
assertion was proved in [11].

Theorem 5.1. Let the following conditions be met for the (2.7), (2.8):
1. A=B=C.
2. Function L(t,~y,w) is constant, i.e. L(t,v,w) = L = const.

8. Matriz S has the form

a? ab ac

S=¢| ab b bc |,
ac be 2

where (, a, b, ¢ are arbitrary constants.

4. Function U(v) has the form U(y) = F (a1 + bya + ¢v3), where F(0) an arbitrary
continuously differentiable function of a single argument 6 = ay1 + by + c7vs.

5. The components of the gyrostatic moment vector A = col (A1, A2, A3) satisfy the linear

system
0 —c b A1 0
c 0 -—a Ao = 0
—b a 0 )\3 0

Then the system (2.7), (2.8) has in addition to integrals (2.9)—(2.11) an additional first
integral
Jy = A(ap + bg + ¢r) + L (ay1 + by2 + ¢y3) = dg = const

and is integrated in quadratures.
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It should be noted that in the classical case of complete dynamic symmetry for the
equations of motion of a heavy solid with a fixed point [1], we have L =0, A =0, S = 0,
U = avy; + bys 4+ ¢y3 and a special choice of the associated coordinate system reduces
the problem to the Lagrange case. However, for non-zero A, S, satisfying the conditions of
statement 5.1, such a coordinate replacement does not, in general, guarantee the fulfillment
of the conditions of statement 4.1 for the system in the new coordinates.

6. Analog to the Hess case

The Hess case, characterized by the existence of an additional fourth linear partial
integral, was found for the equations of motion of a heavy solid in 1890 [1],[2]. Review
of further research related to this case and its analogues, as well as new results, is given
in [5]. Here we give the conditions for the existence of a partial integral for the system (2.7),
(2.8). The following statement is true.

Theorem 6.1. Let the system (2.7), (2.8) meet the conditions:

1. Matriz S has the form

s11 0 s13
S = 0 0 O . and besides 5%3 = 511833 # 0.
s13 0 s33

2. s2,C(A— B) =s},A(B-C).

3. Components of the gyrostatic moment vector A = col (A1, A2, A3) satisfy the following
equations Ao =0, s13 1 — s11A3 = 0.

4. Function U(y) has the form U(y) = F(suuy1 + S1373), where F(0) an arbitrary
continuously differentiable function of a single argument 6 = s1171 + S1373.

5. Function L(t,v,w) is represented as a product
L= L1 (511Ap + 81307”) Lg(t, v, w),
where L1(0) = 0, and function La(t,v,w) is arbitrary.

Then the system (2.7), (2.8) has in addition to the integrals (2.9)—(2.11) an linear partial
integral
J4 = SllAp + 81307" = 0

7. Case of the control moment created by circular-gyroscopic forces

V. I. Zubov successfully applied the principle of optimal damping to solve problems of
rotational motion control, using kinetic energy as the damped function [3]. Following this
principle, we will now consider in (2.7) the moment L(¢,~,w)w X v, created by circularly-
gyroscopic forces, as a control, i.e. the function L(t,7,w) can be selected to achieve certain
goals. Since, according to statement 2.1 , the system (2.7), (2.8) will have the three first
integrals (2.9)—(2.11) , the control goals can only be very limited. For example, this control
cannot provide asymptotic stability of any solution, or control from an arbitrary given initial
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state to an arbitrary final state. However, in some cases, by selecting the function L(t,~,w)
it is possible to achieve local control goals, for example, to output one of the values of 7, ()
to a constant (although unknown in advance) value, or to transfer the state vector to the

surface of the level of the Hess partial integral.
Let’s assume that the control function can take bounded values |L(t,v,w)| < Lo < 400
and choose it so as to provide optimal damping of the function V;(p,q) = A?Bp? + B2Aq>.

Theorem 7.1. Let the system (2.7), (2.8) meet the conditions:
1. B=A, A\ =X=0.

Matriz S is diagonal S = diag(s11, S22, S33), Wwith so9 = $11.
Function U(v) = 0.

Control moment in the system (2.7), (2.8) is selected as L(t,~y,w)w X 7, where
L = —Ly|r|sign(gyr — py2), with Ly > |s11].

e

Then for each solution of the system (2.7), (2.8), the function Vi(p,q) decreases to a
constant value, and the component of the solution y3(t) reaches a constant value in a finite
time.

Now we will choose the control function L(t,v,w) so as to ensure optimal damping of
the function Va(p,r) = s11Ap + s13Cr to zero.

Theorem 7.2. Let the system (2.7), (2.8) meet the conditions 1-4 of statement 6.1,
and the control moment in the system is chosen as L(t,v,w)w X v, where

L = —Losign (s11Ap + 513C7) sign (s11(qy3 — 7v2) + s13(py2 — qm1)) »

and Lo > 0 is a sufficiently large number. Then each solution of the system (2.7), (2.8) in a
finite time reaches the set of the level of the Hess partial integral Va(p,r) = s11Ap+s13Cr =
=0.

8. Example

Family of exact almost periodic solutions. Consider the following parameter values A =
3
=B=1,0C= 5,[1: 1, s11 = S92 = s33 = 1, Ay = Ay = 0, \3 = —1 and a potential

function U = — (’yf +72 + 73%) Using statement 4.1, for the values of the first integrals
J1 =1, J, = -1, Jy = —1 we obtain a parametric family of almost periodic solutions

V21 V21 2

p(t) = Yo coselt), alt) = Yatsimng(t), o) =5,
mnt) =— 7\3/? sin p(t) cos(t) — % cos p(t) + % cos p(t) sin (),

719
38

o(t) + 73

19 sin (t) sin ¢(t),

cos p(t) cosp(t)

v3(t) = % (18\ﬁ+49 sin¢(t)> )

(0 - V2l
72 = 33 sin
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4
where p(t) = Cy — gt, P(t) = ?(C’l —t). Here Cy, Cy — arbitrary constants. Note

that all solutions included in this family are combinations of harmonic oscillations with two

3 27/ 57

incommensurable periods 77 = —, Th = .

Using the statement 3.1, using the Maple analytical computing system, we obtain a
representation of solutions in the form of power series that coincide with the decompositions
of the almost periodic solutions given above.
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