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Construction of exact solutions and analysis of stability of
complex systems by reduction to ordinary differential
equations with power nonlinearities
c© A.A. Kosov1, E. I. Semenov2

Abstract. Complex systems described by nonlinear partial differential equations of parabolic type
or large-scale systems of ordinary differential equations with switching right-side are considered.
The reduction method is applied to the corresponding problem for the system of ordinary
differential equations without switching. A parametric family of time-periodic and anisotropic
on spatial variables exact solutions of the reaction-diffusion system is constructed. The stability
conditions of a large-scale system with switching are obtained, which consist in checking the
stability of the reduced system without switching. The conditions for the existence of the first
integrals for the reduced system of ordinary differential equations expressed by a combination of
power and logarithmic functions are found. For the cases of two-dimensional and three-dimensional
reduced systems, these conditions are written in the form of polynomial equations relating the
system parameters.
Key words: complex systems, large-scale switching systems, stability, reaction-diffusion systems,
exact solutions, first integrals.

1. Introduction

Diffusion processes in multicomponent medium with interacting components are
described by systems of nonlinear partial differential equations of parabolic type (PDE PT) [1].
Equations of this kind, called reaction-diffusion systems, are widely used in mathematical
biology [2] and in chemical kinetics, in the description of chemical technologies and processes of
heat and mass transfer [3], [4], [5]. In the study of parabolic systems of equations, it is important
to construct exact solutions [1], [5], since they can be used to describe the operating modes in
the modeling of technologies, as well as to verify and configure numerical methods for solving
applied problems with boundary conditions. Since non-linear PDE systems are complex objects
to study, the reduction method is usually applied to systems of ordinary differential equations
(ODE) to construct exact solutions [1]. We consider a reaction-diffusion system modeled by
PDE PT with power nonlinearities characterizing the reaction of the mixture components. The
use of a special type of ansatz [6] in section 2 allows us to reduce the construction of the PDE
PT system solution to a similar problem for two ODE systems, which can be solved sequentially.
The first ODE system is nonlinear with right-hand sides represented by combinations of power
nonlinearities (ODE PN). The second ODE system is linear with coefficients depending on
the solutions of the first ODE system. Therefore, even the stationary solutions of the first
ODE PN system are of interest, since in this case the second ODE system has constant
coefficients and is integrable, thus we obtain the exact solutions of the original nonlinear PDE
PT system. The efficiency of the proposed approach to the construction of exact solutions
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of PDE PT is illustrated by an example of a nonlinear system of 4 equations with 4 spatial
coordinates, for which a parametric family of time-periodic and space-anisotropic solutions given
by explicit formulas is obtained. In section 3, we consider a large-scale system [7], consisting
of several subsystems and the relationships between them, described by ordinary differential
equations. Subsystems are described by homogeneous equations with switching of the right
parts, interrelations between subsystems can also be switched. Such systems, called switching
systems or hybrid systems, have been intensively studied in the last decade [8], [9], [10]. Applying
in this section the Matrosov comparison method [11], we reduce the problem of stability of zero
solution of a complex system with switching to a similar problem for a much more simple
system of ODE PN without switching with the right parts, represented by combinations of
power nonlinearities of the same kind that was obtained in section 2. Thus, the properties of
the ODE PN system with power nonlinearities, as shown in sections 2 and 3, are transferred
to significantly more difficult to study classes of systems modeled by PDE PT and large-scale
switching ODE systems. In addition, such ODE PN systems are of independent interest, as they
are used in mathematical biology as models of interacting species [2]. Therefore, the study of
the ODE PN system and the identification of qualitative properties of its solutions is important
for a wider class of differential equations and can be extended to significantly more general and
complex systems. The remaining part of the paper is devoted to the study of ODE PN systems
with right-hand sides represented by combinations of power nonlinearities. Section 4 deals with
the construction of stationary (time-independent) exact solutions and the first integrals of the
reduced ODE PN system. Stationary solutions of ODE PN are found from a linear-quadratic
system of equations for which a number of cases of nontrivial solvability are considered. Here
we obtain conditions on the parameters of the ODE PN system, under which it has explicit
first integrals, given by combinations of power and logarithmic functions from phase variables.
A number of examples illustrating the results are given.

2. Reduction to the ODE system and the construction of exact
solutions of reaction-diffusion system

Consider the system of N quasilinear PDE PT

∂uk
∂t

= ∇ ·
(
uλkk ∇uk

)
+ u1−λk

k

∑
j 6=k

αkj(t)u
λj
j , (2.1)

where uk
4
= uk(t,x) — are the sought functions; x ∈ Rn — is the vector of independent

spatial variables, n ∈ N, n ≥ 2; t ∈ [0,+∞) — is time; k = 1, 2, . . . ,N, N ∈ N; ∇ — is the
gradient operator; αkj(t) — are known functions of time; and the real parameters λk represent
nonlinearity of the medium.

We regard the required functions uk(t,x) as the concentrations of interacting components of
some mixture of substances, while the known functions αkj(t) characterize the rates of occurring
reactions. We cover the situation when functions αkj(t) vanish identically for some k and j.

In order to construct exact solutions for system (2.1) , we use the ansatz:

uk(t,x) = ψk(t)

[
W (x) + ϕk(t)

]1/λk

. (2.2)

Here
W (x) =

1

2
(Ax,x) + (B,x) + C, (2.3)
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where the nonzero symmetric numerical matrix A of size n × n, the constant vector B ∈ Rn

and constant C ∈ R are to be determined.
Inserting (2.2) into system (2.1) and rearranging, we arrive at

ψ′k

[
W (x) + ϕk

]
+

1

λk
ψkϕ

′
k =

1

λk
ψ1+λk
k

[
W (x) + ϕk

]
∆W (x)+

+
1

λ2
k

ψ1+λk
k |∇W (x)|2 + ψ1−λk

k

∑
j 6=k

αkj(t)ψ
λj
j

[
W (x) + ϕj

]
.

Here ψk = ψk(t), ϕk = ϕk(t), ψ′k =
dψk
dt

, ϕ′k =
dϕk
dt

; k = 1, 2, . . . ,N. We find from (2.3)

|∇W (x)|2 = (A2x,x) + 2(AB,x) + |B|2, ∆W (x) = trA − trace of matrix A.

With these relations and (2.3) the last N equalities rewrite as(
ψ′k −

trA

λk
ψ1+λk
k − ψ1−λk

k

∑
j 6=k

αkj(t)ψ
λj
j

)(
1

2
(Ax,x) + (B,x) + C

)
+

+ψ′kϕk +
1

λk
ψkϕ

′
k =

trA

λk
ψ1+λk
k ϕk+

+
1

λ2
k

ψ1+λk
k

(
(A2x,x) + 2(AB,x) + |B|2

)
+ ψ1−λk

k

∑
j 6=k

αkj(t)ψ
λj
j ϕj. (2.4)

It is straightforward to verify that if the symmetric matrix A, the vector B and the constant
C satisfy the next system of algebraic equations:

A = 2σ A2, B = 2σ AB, C = σ |B|2, (2.5)

where σ 6= 0 is the separation constant, then (2.4) reduces to the system of ordinary differential
equations:

ψ′k = Skψ
1+λk
k + ψ1−λk

k

∑
j 6=k

αkj(t)ψ
λj
j , (2.6)

ϕ′k =

(
trAψλkk − λk

ψ′k
ψk

)
ϕk + λkψ

−λk
k

∑
j 6=k

αkj(t)ψ
λj
j ϕj, (2.7)

where
Sk =

trA

λk
+

1

σλ2
k

. (2.8)

These arguments justify following statement.

T h e o r e m 2.1 Nonlinear reaction-diffusion system (2.1) admits exact solutions (2.2),
where the function W (x) can be an arbitrary polynomial of the form (2.3) with coefficients
satisfying (2.5), while the functions ψk(t), ϕk(t) are solutions to (2.6), (2.7).

Thus, theorem 2.1 reduce the problem finding of exact solutions for PDE PT (2.1) to solving
ODE PN (2.6), (2.7). At the same time, even constant nontrivial solutions of a nonlinear system
(2.6) are of interest. The linear autonomous system (2.7) corresponds to such solutions, that
can be found in an explicit form.
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E x a m p l e 2.1 Consider the system like (2.1) of four equations in the case of four
spatial coordinates

∂u1

∂t
= ∇ ·

(
u

1/3
1 ∇u1

)
+ u

2/3
1

(
3

2
u

1/3
2 − u1/3

3 +
1

2
u

1/3
4

)
,

∂u2

∂t
= ∇ ·

(
u

1/3
2 ∇u2

)
+ u

2/3
2

(
3

2
u

1/3
1 − u1/3

3 +
1

2
u

1/3
4

)
,

∂u3

∂t
= ∇ ·

(
u

1/3
3 ∇u3

)
+ u

2/3
3

(
2u

1/3
1 − 2u

1/3
2 + u

1/3
4

)
,

∂u4

∂t
= ∇ ·

(
u

1/3
4 ∇u4

)
+ u

2/3
4

(
9

8
u

1/3
1 + 20u

1/3
2 − 161

8
u

1/3
3

)
.

This system has the following parametric family of exact, periodic in time and anisotropic in
spatial variables solutions:

uk(t,x) =

[
W (x) + ϕk(t)

]3

, k = 1, 4,

where
W (x) = − 1

432
x2

1 −
1

108
x2

2 −
1

108
x2

3 −
1

48
x2

4+

+
1

108
x1x2 +

1

108
x1x3 −

1

54
x2x3 + kx1 − 2k (x2 + x3)− 108k2,

ϕ1(t) = C1 sin t+ C2 cos t, ϕ2(t) = C1 sin t+ C2 cos t,

ϕ3(t) =

(
358

193
C1 +

48

193
C2

)
sin t+

(
358

193
C2 −

48

193
C1

)
cos t,

ϕ4(t) =

(
467

386
C1 −

1062

193
C2

)
sin t+

(
467

386
C2 +

1062

193
C1

)
cos t.

Here k, C1, C2 are arbitrary real parameters.
Periodic chemical reactions were discovered by Belousov in the early 50s [12]. Questions of

existence and construction of periodic solutions of reaction-diffusion systems are of interest for
chemical technology and are studied in a number of papers [13], [14], [15].

3. Stability analysis of large-scale systems by common vector
Lyapunov functions

Consider a large-scale system with switched subsystems and switched interconnections

ẏi = f
(si(t))
i (yi) +

K∑
j 6=i

f
(sij(t))
ij (t,y), i = 1, K. (3.1)

Here we denote the state vector for the i-th subsystem by yi ∈ Rni and y ∈ Rn is the full state
vector for the large-scale system (3.1). Functions si(t), si : [0,+∞)→Mi, Mi = {1, 2, . . . , Ki}
determine the switching signal for the i-th subsystem. We suppose that functions f (j)

i (yi),
i = 1, K, j ∈ Mi are continuous and homogeneous with order ςi ≥ 1, where again the rational
number ςi has an odd numerator and an odd denominator. Functions sij(t), sij : [0,+∞)→Mij,
Mij = {1, 2, . . . , Kij}, determine the switching laws of influence of the j-th subsystem on the
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i-th one. The functions si(t), sij(t) are piecewise-constant, right-sided continuous and have a
finite number of point of discontinuities on each finite interval. As far as the functions, which
determine the influence of the j-th subsystem on the i-th one are concerned, we assume that
inequalities ||f (k)

ij (t,y)|| ≤ hij||yj||βj are satisfied (for all k ∈ Mij, t > 0, y ∈ Rn). Note that
the system (3.1) refers to a class of switching systems or hybrid systems, for which urgent
problem is to develop effective stability criteria [8], [9], [10]. Suppose that for any i-th family
of homogeneous differential systems with an order ςi

ẏi = f
(k)
i (yi), k ∈Mi, (3.2)

a homogeneous common Lyapunov function (CLF) with an order ηi > 1 has been constructed
(e.g. on the basis of ([17], Theorem 1)). For all yi ∈ Rni the CLF satisfies the following
inequalities

a1i||yi||ηi ≤ Vi(yi) ≤ a2i||yi||ηi , ||gradVi(yi)|| ≤ a3i||yi||ηi−1,

V̇i(yi)
∣∣
(3.2)
≤ −a4i||yi||ηi−1+ςi , aki > 0. (3.3)

Consider a common vector Lyapunov functions (CVLF), where each component represents a
CLF for the corresponding family (3.2):

V(y) = col (V1(y1), . . . , VK(yK)) . (3.4)

From (3.3), for the derivative of the i-th component of CVLF (3.4) with respect to system (3.1)
we obtain the following estimate

V̇i(yi)
∣∣
(3.1)
≤ −a4ia

− ηi−1+ςi
ηi

2i V
ηi−1+ςi

ηi
i + V

ηi−1

ηi
i

K∑
j 6=i

hij a3i a
1−ηi
ηi

1i a
−
βj
ηj

1j V

βj
ηj

j , i = 1, K. (3.5)

Let’s use designations:

Si = −a4ia
− ηi−1+ςi

ηi
2i , λi =

ηi − 1 + ςi
ηi

, µi =
ηi − 1

ηi
, (3.6)

αij = hij a3i a
1−ηi
ηi

1i a
−
βj
ηj

1j , νj =
βj
ηj

(3.7)

Using estimates (3.5) and designations (3.6), (3.7) we obtain the comparison system

u̇i = Siu
λi
i + uµii

K∑
j 6=i

αiju
νj
j ≡ Φi(ui), i = 1, K. (3.8)

The functions Φi(u) are continuous and quasimonotone for all u ∈ RK
+ . Since CVLF (3.4) is

positive definite, according to the comparison principle [11] the trivial solution y = 0 of (3.1)
has the same stability properties as the trivial solution of the comparison system.

T h e o r e m 3.1 If the trivial solution u = 0 of comparison system (3.8) is stable
(asymptotically stable), then the trivial solution y = 0 of large-scale system (3.1) is stable
(asymptotically stable), at any switching laws si(t), sij(t).

Thus, the theorem 3.1 allows to reduce a research of stability of large-scale system with the
arbitrary switching laws to the analysis of stability of significantly more simple system (3.8)
without switchings.
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4. Stationary solutions and first integrals

As shown in section 2, the construction of exact solutions of the reaction-diffusion system
leads to the ODE system (2.6), (2.7). We come to more general ODE system (3.8) this same
kind in section 3 by applying the vector Lyapunov function method to analyze the stability of
a large-scale switching system. Thus, completely different problems led us to study the ODE
system (3.8). In addition, this system can meet in other problems and be of independent interest.
Therefore, we consider some properties of this ODE system (3.8). In this section of the paper
we obtain some exact solutions of the system (3.8) as well as its first integrals.

Stationary solutions of the system (3.8) satisfy the system of algebraic equations: Skuλk−µkk +∑
j 6=k

αkj u
νj
j = 0. We will make replacement Zk = uνkk and rewrite the system as follows:

SkZ
γk
k +

∑
j 6=k

αkj Zj = 0. (4.1)

Here for convenience, the symbol γk = (λk−µk)
νk

is entered . The system (4.1) is nonlinear and
in general it is difficult to explore its solvability under arbitrary coefficients, so we consider a
number of special cases of interest.

1. Let under all k = 1, 2, . . . , n the equality holds λk = µk. Then (4.1) becomes linear and
is written as

QZ = −S, (4.2)

where Z = col (Z1, Z2, . . . , Zn) is required vector, S = col (S1, S2, . . . , Sn) — is vector of known
numbers, and matrix Q = [qkj]k,j=1,n set as follows: qkj = αkj, k 6= j and qkj = 0, k = j. If
detQ 6= 0, then the solution of system (4.2) is issued the only way by Kramer’s formulas.

2. Let as Sk 6= 0 and λk 6= µk for all k = 1, n. Then, if matrix of linear part system (4.1)
has the form

Λ =


0 α12 0 0 . . . 0
0 0 α23 0 . . . 0
0 0 0 α34 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . αn−1n

αn1 0 0 0 . . . 0

 , (4.3)

where α12 6= 0, α23 6= 0, . . . , αn−1n 6= 0, αn1 6= 0, the system reduce to only one equation:

ΩZγ
1 + Z1 = 0, where γ =

n∏
k=1

γk and

Ω =
Sn
αn1

(
− Sn−1

αn−1n

)γn(
− Sn−2

αn−2n−1

)γnγn−1

× . . .×
(
− S2

α23

) n∏
k=3

γk
(
− S1

α12

) n∏
k=2

γk

.

The latter equation has a nontrivial solution Z1 =

(
− 1

Ω

) 1
γ−1

. In this case Z2,..., Zn are defined

by formulas

Z2 = − S1

α12

Zγ1
1 , Z3 = − S2

α23

(
− S1

α12

)γ2
Zγ1γ2

1 ,

Z4 = − S3

α34

(
− S2

α23

)γ3 (
− S1

α12

)γ3γ2
Zγ1γ2γ3

1 , etc.
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We proceed to the construction of the first integrals of the ODE system (3.8), in the case
when the right part is autonomous αkj(t) = αkj ≡ const. Introduce the notation νk(t) = Xk(t),
k = 1, n and rewrite the ODE system (3.8) for this case as follows:

Ẋk = SkX
λk
k +Xµk

k

∑
j 6=k

αkj X
νj
j , Xk = Xk(t), Ẋk =

dXk

dt
. (4.4)

We show that the statement is true.

T h e o r e m 4.1 Let the parameters of a system (4.4) satisfy the following conditions:
1. λk = 1, k = m+ 1, n, m < n;
2. νk = µk − 1, k = m+ 1, n;
3. νk = µk − λk, k = 1,m
and the following system of algebraic equations:

n∑
k=1

AkSk = 0, Akαkj + Ajαjk = 0, k = 1, n, j = 1, k − 1 (4.5)

has a nontrivial solution (A1, . . . , An). Then system (4.4) has a first integral

J =
m∑
k=1

Ak
1− λk

X1−λk
k +

n∑
k=m+1

Ak lnXk. (4.6)

P r o o f. Derived from the expression (4.6) to the system (4.4) has the form

dJ

dt
=

m∑
k=1

AkX
−λk
k

[
SkX

λk
k +Xµk

k

∑
j 6=k

αkj X
νj
j

]
+

+
n∑

k=m+1

AkX
−1
k

[
SkX

λk
k +Xµk

k

∑
j 6=k

αkj X
νj
j

]
.

Given the conditions 1 – 3, the last equation is rewritten as

dJ

dt
=

m∑
k=1

AkSk +
m∑
k=1

AkX
µk−λk
k

∑
j 6=k

αkj X
µj−λj
j +

n∑
k=m+1

AkSk +
n∑

k=m+1

AkX
µk−1
k

∑
j 6=k

αkj X
µj−λj
j

=
n∑
k=1

AkSk +
m∑
k=1

AkX
µk−λk
k

∑
j 6=k

αkj X
µj−λj
j +

+
n∑

k=m+1

AkX
µk−λk
k

∑
j 6=k

αkj X
µj−λj
j =

=
n∑
k=1

AkSk +
∑

k=1,n, j=1,k−1

(Akαkj + Ajαjk) X
µk−λk
k X

µj−λj
j .

Thus, if the constant Ak, k = 1, n satisfy a system of algebraic equations (4.5), then
dJ

dt
= 0.

That is what we wanted to prove. �
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R e m a r k 4.1 Statement 4.1 remains valid also for cases when
λk 6= 1 for all k = 1, n and λk = 1 for all k = 1, n. In the first case, the expression for

the first integral (4.6) will not contain logarithmic terms, and in the second it will not contain
power terms.

R e m a r k 4.2 The system (4.5) is a linear homogeneous system N =
n(n− 1)

2
+ 1

equations with respect to n < N unknowns (A1, . . . , An). For nontrivial solutions to exist, it
is necessary and sufficient that the rank of the matrix of this system r is less than n. For
r = n − 1, the expression (4.6) gives only the first integral whose coefficients Ak, k = 1, n are
determined to an arbitrary nonzero factor. For r < n − 1, the expression (4.6) yields a family
of first integrals whose coefficients Ak, k = 1, n depend on n− r ≥ 2 arbitrary parameters.

E x a m p l e 4.1 Let n = 3 and the conditions λk 6= 1 for all k = 1, 3 are satisfied. In
this case, the following autonomous ODE system:

Ẋ1 = S1X
λ1
1 + α12X

µ1
1 Xµ2−λ2

2 + α13X
µ1
1 Xµ3−λ3

3 ,

Ẋ2 = S2X
λ2
2 + α21X

µ1−λ1
1 Xµ2

2 + α23X
µ2
2 Xµ3−λ3

3 , (4.7)

Ẋ3 = S3X
λ3
3 + α31X

µ1−λ1
1 Xµ3

3 + α32X
µ2−λ2
2 Xµ3

3 ,

according to statement 4.1 has first integral in the form J =
3∑

k=1

Ak
1− λk

X1−λk
k . The unknowns

A1, A2, A3 satisfy the system of linear algebraic equations

A1S1 + A2S2 + A3S3 = 0, A1α12 + A2α21 = 0,

A1α13 + A3α31 = 0, A2α23 + A3α32 = 0. (4.8)

For the existence of nontrivial solutions we require, for example, the equality of all minors of
the third order to zero, which leads to the following relations on the parameters of the system:

α12α23α31 + α13α32α21 = 0, α23α31S1 + α13α32S2 − α13α23S3 = 0. (4.9)

When these equations are hold, the rank of the system matrix (4.8) is 2 and therefore it has
a nontrivial solution:A1 = −α31

α13

a, A2 = −α32

α23

a, A3 = a, where a 6= 0 is arbitrary constant.

Thus, the system (4.7) with parameters satisfying the equality (4.9) has first integral:

J1 =
α31

(1− λ1)α13

X1−λ1
1 +

α32

(1− λ2)α23

X1−λ2
2 − 1

1− λ3

X1−λ3
3 = const.

E x a m p l e 4.2 Consider a system (4.4) with n = 2, in the form

Ẋ1 = S1X
λ1
1 + α12X

µ1
1 Xν2

2 , Ẋ2 = S2X
λ2
2 + α21X

µ2
2 Xν1

1 . (4.10)

We show that there are 4 different variants of conditions on the parameters Si, λi, µi, νi,
(i = 1, 2), α12, α21, under which the system (4.10) has the first integrals.

1. Let parameters of system (4.10) satisfy conditions:

λ1 6= 1, λ2 6= 1, ν1 = µ1 − λ1, ν2 = µ2 − λ2, α21S1 − α12S2 = 0,

then system (4.10) has first integral

J1 = (1− λ2)α21X
1−λ1
1 − (1− λ1)α12X

1−λ2
2 ≡ C1,
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where C1 is arbitrary real constant.
2. Let parameters of system (4.10) satisfy conditions:

λ1 = λ2 = 1, ν1 = µ1 − 1, ν2 = µ2 − 1, α21S1 − α12S2 = 0,

then system (4.10) has first integral

J2 = α21 lnX1 − α12 lnX2 ≡ C2,

where C2 is arbitrary real constant.
3. Let parameters of system (4.10) satisfy conditions:

λ1 = 1, λ2 6= 1, ν1 = µ1 − 1, ν2 = µ2 − λ2, α21S1 − α12S2 = 0,

then system (4.10) has first integral

J3 = (1− λ2)α21 lnX1 − α12X
1−λ2
2 ≡ C3,

where C3 is arbitrary real constant.
4. Let parameters of system (4.10) satisfy conditions:

λ1 6= 1, λ2 = 1, ν1 = µ1 − λ1, ν2 = µ2 − 1, α21S1 − α12S2 = 0,

then system (4.10) has first integral

J4 = α21X
1−λ1
1 − (1− λ1)α12 lnX2 ≡ C4,

where C4 is arbitrary real constant.
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