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Jlmaammdeckue oundypkaimnoHHbIE 3aJa9l CO CIIEKTPOM
d.1lIMuara B JuHeapm3aliuid B YCJIOBUAX I'PYIIIOBOIA
CUMMEeTPUNn

© B.B. Jlorunos', 1.B. Konomiesa?, JI.B. Muponosa?

Awnnoranua. Pesyiabrars: pabor [1], [2] miag crannoHapHBbIX 337249 TEOPUH BETBIECHUS CO CIIEKTPOM
9.1ImMuara B muHeapu3anuu TPAHCHOPMUPYIOTCH HA JuHAMUYecKue OudypKAIMOHHBIE 32291 HA
criektpe .I1Imuara. Ha ocHoBe 0011ieii TeopeMbl 0 HACIEIOBAHUY TPYNIIOBON CUMMETDUU HEJIH-
HEIHO 33a9u COOTBETCTBYIOIUMY YPABHEHUSIMYU PA3BETBIEHUS B KOPHEBBIX MOAPOCTPAHCTBAX
(YPK), nBuzkyIuMucs 110 TPAeKTOPUH TOYKHU BETBJIEHUs N0KA3aHA TEOPEMa O HESIBHBIX OIEpaTO-
pax B YCJOBHSIX IPYMIOBO cuMMeTpun U Teopema o penykiu Y PK mo uciay ypaBuenuii B ciydae
Bapuarponnasix ¥ PK. HcnonssoBansr TepMunonorns u obosnadennd [3]- [6].

KaioueBbie cJioBa: guHaMuYIeckre OmdypKamuoHHble 3amaum; Oumdypramums Ilyamnkape-
AngponoBa-Xonda; ciekrp [Imuara; rpynmnosast cummerpust; G -WHBApHAHTHAS TEOPEMA O HEAB-
HBIX OIepaTopax; OmdypKamus; yCcToMInBOCTh; crmekTp J.I1IMuaTa; ypaBHEeHUEe Pa3BETBIEHUS B
KOPHEBBIX TOANPOCTPAHCTBAX BAPUAIMOHHOTO THUTIA

1. Introduction.

In cycle of works at the beginning of XX century on linear and nonlinear integral
equations E.Schmidt had introduced eigenvalues Ax of an operator acting in a Hilbert space
B : H — H , taking into account their multiplicities and eigenelements {uy }3°, {vg}$° satisfying
the relations Bu, = A\yvg, B*vp = Agug, that allows to extend Hilbert-Schmidt theory on
nonsymmetric completely continuous operators in abstract separable Hilbert spaces. Later
such eigenvalues get the name s-numbers (we have introduced in our previous articles the
notion "Schmidt spectrum"). Since this article is the direct prolongation of the work [1], where
stationary bifurcation problems on E.Schmidt spectrum were considered, here as far as possible
auxiliary material connected with E.Schmidt spectrum and its applications contained in [1] and
more earlier articles will be reduced. Indicated there possible applications to electromagnetic
oscillations theory state the problem on bifurcation and stability of bifurcating solutions in
dynamic bifurcational problems with E.Schmidt spectrum in the linearization, in particular
under group symmetry conditions. The aim of this article is the transformation of the results [1]
on dynamic bifurcation problems. These are the group symmetry inheritance theorem by the
relevant branching equations (BEq) and branching equations in the root-subspaces (BEqRs)
with corollaries:

1. G-invariant implicit operators theorem [7];
2. theorem on reduction by the the order of variational and variational type BEqs and BEqRs
for the cases of non-invariant zero-subspaces of operators [2], [8], [9].

The obtained results are supposed to apply to some problems of electromagnetic oscillations
theory.
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2. Poincaré-Andronov-Hopf bifurcation on E. Schmidt spectrum.

In real Banach spaces E; and E,, Ey C Es C H (H is a Hilbert space) the system of
implicitly given differential equations non-resolved to derivatives is considered

Fl(php??xay?‘g):ou F2(p17p2>x7975)207 Fk<0707‘7;07y078)507 ]{7:1,2, b1 = dt’ b2 = CCI;,ZJ

Fl;n (07 07 o, Yo, € ) DO + D0(€>7 F2;2 (07 07 o, Yo, 8) - _AO - A0(€),

)

F2;,1 (07 07 Lo, Yo, € ) _A* A*( ) F2;)2(OJ 071‘07907 6) = DS + DS(&T )
Fl;(07 07 Lo, Yo, € ) _BO + BO(‘S) FI;J(OJ 07 x07y07€> = CO - 00(8)7
Fy (0,0, 10,90, ) = Cs(e), Fy(0,0,20,50,€) = —B§ + B (e

(2.1)
In general case when the operators Ay, Ag(€), ..., Do, Do(€), and adjoint to them can be
unbounded it is supposed that Dy, C DAO(E),DAO = Fi,...,Dp, C Dpye),Dp, = E1 the
system (2.1) allows the following linearization

(od )G =108 %) - (58 2 G )-
(B G- (i)

which is convenient to present in the matrix form

+ o~

AO(ng YZ)T = (BO - B0(6>>(X7 Y)T - A0(€)<X£, K,)T + R‘(x07 Yo, X) }/a Xz{a }/t,v 6) (23)

The index zero at the operator and everywhere below means the relation to the point zg,yq,
ie. Ay = A(wo,yo). The vectorial nonlinear operator R is supposed to be sufficiently
smooth on X = (X, Y)T = (x — 20,y — yo)? and X/ = (X/,Y/)T and R(wo,yo,0,0,¢) =
0, Rx(xo,v0,0, X, ) = 0,Rar (0,90, X,0,6) = 0. Keeping in mind the dense embedding
Ey, C Ey C H the operators Ay, B, Ag(¢),Bo(e) can be regarded as acting in the direct
sum H? of two Hilbert space H .

Further it is considered the sufficiently general case when the Ag-spectrum oa,(Bo) of
the Fredholm operator By is decomposed into two parts: o, (Bo) lying strictly in the left
half-plane and O’%O(BO) consisting of the eigenvalues +ia of the multiplicity n. More general
case implies only technical difficulties.

Let there exist [10], [11] elements Uy, = Ul(,i) = (ulk ) Uy = UQ(I? = (gzk > and

U1k U2k

Vi =V = ( zlk > Var = V) = < ?k ) belonging to direct sum H + H = H? | such that
1k 2%

(1) * * (1)
(1) — By, aAg Uk _ x (1 Bj —aAj Vi _
B(a)2;” = ( —aAy By ) ( UQ(;) =0,B()¥," = aAy  Bj VQ(I:) S

(2.4)
It means that the zero-subspaces N(B(«)) and N(B*(a)) of the operators B(a) and

B*(«) have the forms N (B(a)) = span{q)g? = Ut : CIDSC) = Ua . ko=
Uak, —Uk

L,...n}, N(B*(«a)) = span{\I/SC) _ (Y ; \Ilgg) _ (Ve , k =1,..,n}, and in
Vay Vag
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coordinate representation respectively

—Cgulk + Bgﬂlk — O[ASU/Qk + OéDgagk =0 —C’a"vlk + Bgﬁlk + O[ASUQk - O[DS;-[]/QIC =0
Bouye — Cotny, + aDougy, — aAgtigy, =0 Boviy — Cive — aDovag + aAgva, = 0
OéASUlk - CVDS&UC - CgUQk + Bgﬂ% =0 —O./onlk + OéDSf?jlk - Cgvgk + BS,?jgk =0

—aDyuyy, + aAotny + Bougp — Cotioy, =0 aDoviy, — aAjviy 4+ Bovay — Civay, = 0

(2.5)

that can be regarded as the systems in the direct sum H of four Hilbert spaces.
Carrying out the complexification of the equation (2.1), consider it in the spaces & =

By, + 1By, k = 1,2 and suppose that the nonlinear operator R admits a sufficiently smooth

extension on these spaces. Then the elements U, = Uy + iUy, = < Y1k —Hg% ) .U, and
U1k + U2
U1k + 1V

Vi =Vi+iVor, = < e
k 1kt Vor <U1k+w2k

> , V) are the eigenelements of the following eigenvalue problems

BoUy = iaAgUy, BoUy = —iaAoUy, BiVi = —iaAgVi, BiVy, =iaAgVy, k=1,...n (2.6)

It can be easily verified: the substitution Uy, Vi or U,V into the relations (2.6) after the
separation of real and imaginary parts leads to the systems (2.5).

The problem of the finding of a2_:u -periodical solutions to (2.3) is setting,where u = u(e) —
0,6 — 0 is the unknown addition to the frequency of oscillations. The Poincare substitution
t = T X(t) = (X(t),Y(t)T = V(1) reduces this problem to the determination of 2 -

a+p’
periodic solutions of the following equation with two small parameters p and ¢

BoY = pAoY + (a + p)o(e)Y + Bo ()Y + Rz, yo, (o + 1) G, V. €) =
= MQ[oy + R(CL’O, Yo, %7 Yy, 1, 5)7
(BoY) (1) = BoY = BoV(7) — aAg2, () (1) =AY = Ag L,
Ao(£)Y = (Ao(e)V)(T) = Ag(e) %

(2.7)

The supposed Fredholmian operator By) and operators in (2.7) are mapping the space Y of
27 -periodic continuously differentiable functions 7 with values in €2 C H into the space Z

of 2w -periodic continuously differentiable functions 7 with values in £2 C H at the usage of
2

special form functionals (¥, F)) = [(V(7),F(r)), Y eYCH,FeY CH or Y€ ZC
0

7:2,]: ez CH. Zero-subspaces of the operators By and ‘B are 2n-dimensional

N(Bo) = span{p\’ = o\ (20, 40, 7)} = U(o, y@eiﬂagi}zl
N(3B}) = span{y(V) = %(fl)(xm Yo, T)} = Vi(zo, yo)e'™, ¥, Yoy

with Ag- and Aj-Jordan chains (2ly- and 2(%- Jordan chains) gp,(f) = U,is)(xo,yo)eiT,w,gs) =
Vk(s) (20,%0)e™, s = 1,py, of the length pi, k =1,n. Here H is a Hilbert space with elements of
H containing the factors €™ m- are integers.
Definition 2.1. [12], [13]. The elements U (zo,p0) = (u{) + il @l + iall)), s =

L,pi, k = 1,n form the complete canonical generalized Jordan set (GJS= Ay(ec)-JS), if

s—1 ,
= SSAUSD Ag(e) = Ave + Age? + .., <U,§S), F§”>H —0,5=2, ... P
=1

J

s—1 )
Dp — det [Z <AjU,£pk+1_j), ‘/2(1)>
j=1 H

(BO — ZO[A())UIES)

# 0, Vl(l) = ‘/1(11) + i‘/Q(ll) = Vi = (v11 + 1wy, Vi + 0) "
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This JS 1s bicanonical, if GJS of elements {Vl(l)}? for conjugate operator (B{+iaAf)—Aj(e)
s also canonical, and three-canonical if in addition

pr+1-1

<Ui(j)7ri(€l)> _ 5ik5j17 Fg) _ Z AV, kaerlfs)’

. pk+1 i
<ZZ(])7V;€(Z)> _ 5 5 ) Z A*U(Pk+2 Jj— 5)

Later turn out to be convenient the following designations: U = U(zo,y9) =
(Ul(l), ...,Ul(pl), R IR AL ), U(]) = U(])(xo,yo) the vectors T' = T'(zg,%0),V = V (2o, o)
and Z = Z(xg,yo) are defined analogously, K = Z pr 1s the root-number.

k=1
R e m a r k. All these notions and designations are naturally transferring on Jordan

sets of the zero-subspaces N (B) and N (2B*), among them the Jordan chains biorthogonality
conditions of the type (2.7).

However in the Poincare substitution the small parameter u is depended on ¢, 1i.e. u = p(e)
and together with the solution Y of the equation (2.7) is also be subjected to the determination.
Moreover later Ag-Jordan structure of the operator By will be used because of in the general
case u(e) turns out to be analytic on fractional degrees of .

Lemma 21. [5], 6], [L1], [12]. The Fredholmian operator-function B9 — pdy as
depending linearly on small parameter p always has complete three-canonical GJS satisfying
the biorthogonality conditions

<<90§k),%( >>~—5 Ok, <<z§’“>,w§”>>?=5jsam, k(1) = 1, p;(ps),

i - 2.8
- A wsps+1_l)7 ij) = A0¢jpj+1 k)v j(S) = ,TL. ( )
The relations (2.8) allow to determine the projectors
P = P(x0,50) = anlkjl« 77§k)>>¢§k) = {(( M, P =P(xo,y0) = (7)),
Q=Qlro.mn) = 3 3 () = (Gwdz Q=Tlanw) = (=

P(z0,0) = P(xo,y )+ P(zo,10), Q(z0,50) = Qzo,%0) + Q(wo, o)

generating the decompositions of Hilbert space H (Banach spaces Y and 7 ) into the direct
sums

H= 7”_221((1,07 Yo) - 7:200_2K(9507 Yo), H= ﬁzK(%, Yo) + ﬁoo,gK(:Uo, Yo) (2.10)

Operators By and Ag (o) are intertwining by the projectors P(xo,yo) and Q(xo, o),
P(z0,90) and Q(zo,y0) : BoP (20, Y0)u = Q(z0, y0)Bou on De,, Bop = Voz, By = By, Vo
is is cell-diagonal matriz 8o = diag(By, ..., By,), where B; — (p; X p;) - matriz with units on
subsidiary subdiagonal and zeros on other places; AoP(xo, yo)u = Q(z0,yo)Aou on Dy,, Agp =
Aoz, Aoy = By, where By is cell-diagonal matriv By = diag(B*,...,B"), B' is (p; X p;)
matriz with units on subsidiary diagonal and zeros on other places; Opemtors By and Ay (Ay)
are acting in invariant pairs of subspaces Hooo QK(xO,yO) and Hoo ok (T0, Yo) H2K(x0,y0)
and Hox (20, %0) and By : Dy (VHZ 2K (20,50) = Hooar (20, 0), Ao : Day VH* (20, o) —

Hak (o, yo) are isomorphisms.

Theorem 2.1. In conditions of Lemma 2.1 the problem on periodic solutions the
equation (2.3) (2w -periodic solutions to the (2.7)) in a neighborhood of the bifurcation point
(x0,90;0) is equivalent to the finding of small solutions to finite-dimensional A.M. Lyapounov
BEqR (2.11) or E. Schmidt (2.12).
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PROOF. In accordance with the expansion (2.10) setting J = U + V,V = V(z0,90,&,€) =
k z —(k = — 5 oo
Z(Sjk‘é‘ )(9507y0) +fjk90§- )(96’07y0)) ={-p+E-pe HZK(%J/O),U =U(wo,y0) € H 2K(9€0>yo)
write the equation (2.7) in projections on the root-subspaces and their direct supplements in

the point (xo, yo)

(I = Q(xo, yo)Bo(wo, Yo )U (0, yo) =
= (I - Q(xoa yO)){/LQLO(U('CEOa yO) + V(x07 yO) + R(xo, Yo, %7 []? K 5))}7
Q(70, ¥0)BoV (70, o) = Q(x0, yo){ 1o (U (70, y0) + V(70, Yo) + R(0, Yo, %7 [ ps€))}

and resolving the first of them according implicit operators theorem [3] and Lemma 2.1 with
respect to U(zg,yo) we obtain U(zg,yo) = U(zo, Yo, V(T0, Yo, &, &), 11, €) . Tts substitution in the
second equation gives A.Lyapounov BEqR

f(»’lfoayo;V(ZUO,yo;f;Z)aM,@) = Q(o, yo) {12 (U + V) + R(z0, Yo, %["']7 [ ] p,8) =
B = (Vo — ipD1)E — ((R(20, Yo, 4[], [, 1, €), (o0, 90))) = 0 -
f(l'(), Yo, V(ZU(), Yo, 57 §)7 22 6) = 07 [] - U(l'(), Yo, V(ZU(), Yo, 57 6)7 1, 6) + V(I'(), Yo, 57 f)
(2.11)
More detaily consider the construction of E.Schmidt BEqR. Writing the equation (2.7) in the
form of the equivalent system

Bo Y = 1Y + R(x0, yo. DY, p,e) + Z(&lz ' +8.3Y),

(2.12)
Eio = (VAN & = (V7).

)

N n ~—1
where Bo= Bo(zo, yo) + S [N 2 + (¢, 7)2W] is E.Schmidt regularizator [3], 8, =
i=1

['(xg,y0) = Io, its solution find in the form Y = w + V(20 40,&,6) = w+ € - ¢ + € - 3. This
gives w = :(I — puLoRAo) oA (E- 0 —tf@) +To(I — pRo)To) "R (xo, yo, (o + u)j‘i[w(mo, Yo) +
V(x0,Y0,§,€)], w(xo,yo) + V(xo,v0,&,€), 11,€). Substitution of Y = w + V into the second
equations (2.12) taking into account the relations F;‘w; )(xo, Yo) = 1/)§1)<x07 Yo), F;';%( )(%7 Yo) =

@/}ﬁpﬁ%g)(xo, Yo),s > 2, leads to E.Schmidt BEqR in the basis {¢, ®}

tsl(gjOa Yo, V(l’o, Yo, 57 g)? M, 5) - __<<w7 Vgl)(dfo, y0)>> -
= —p({Qo(I — plo0) (& - 0 + & 8), 6" (20, 40))) — (I — pfAeT0) " R(-..), %" (20, 10))) = 0,

tso (70, Yo, V(Z0, Yo, &, E) 2 g) = —((w, 7§U)($07?/0)>> =

= (((I = pl'oRAo) ™" Z E(fu% + fz]%J)) p(I = pLoRA6) " ToAo(€ - ¢ + & - 3), 17 (20, 0))) —

i=1j=

—(((I = pAoT0) 'R, WP (20, o)) = 0.

O— |5 |Pj
With regard to the relations i”’lgogg)(xo,yg) = (Fgﬁo)”’lgoy)(xo,yo) = i(pj( [pj] ])(xo,yo) it
transforms to the form

o1 (20, Yo, V(0. Y0, €, 8), 11,€) = — 70 E — (I = pUoT0)) T R(--.), 0L (o, 90))) = 0,
tsa(x07y0av(x07y0 5 5)7 )_
= Eoo — T — (1 = pUoT0) R, 0 (o, 10)) =0,

&)

t31<370,y(],V($0,y0, ) — 0 tsa(x07y07v<x07y(]?faE)?/L? 8) = 07
8:1,...,n, 0'—1 7ps
(2.13)
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3. Theorems on group symmetry inheritance of original nonlinear
equation by the relevant BEgRs.

At the presence of continuous symmetry admitting by original nonlinear problem (2.1)
with operators acting in Banach spaces Lie group G; = Gi(a), a = (ai,...,qa;) its essential
parameters is supposed being [-dimensional differentiable manifold, satisfying following
conditions [8],[9],[1],[2],[7]:

(c1). representation a — Lg%, acting from a neighborhood of the unit element of
Gy(a) into the space E; belong to the class C', so that X(zo,y0)? € E; + E, C H? for
all infinitesimal operators X (x,y)T = lim t7! [Lyaqey (2, 9)T — (z,y)"] in tangent to Ly

: I
manifold Tg(a) ;

(c2). stationary subgroup of the element (x¢,40)7 € E, + E; C H? determines the
representation L(G;) of local Lie group Gy, C G;, s < [, with s-dimensional subalgebra
o) of infinitesimal operators. This means that for non-stationary bifurcation element
Xi(wo, y0)T, X3, € Té(a) form in the zero-subspace of the linearized operator 2k = 2(l — s)-
dimensional subspace and bases in it and in the algebra T é(a) can be ordered so that
Xi(z0,90)" = &ripr + §Pp L < b < 5, Xj(0,90)T =0 s j > K+ 1.

(c3). As earlier the dense embeddings Fy C Fy C H in Hilbert space H with estimates
lullg < asl|ul|g, < ai]jul|z, and condition that the mapping X : Ey — H is bounded in
L(FEy, H) topology.

Everywhere below it is supposed that the system (2.1) allows the group symmetry

KgFj<p17p27‘r7y7€) = F}(Lgp17Lgp27Lgx7Lgy7€)7 ] = 172 (31)

where L,(K,) is the representation of the group G in Ej(E;) expanded on H . Here the
bifurcation point (xo,yo) moves along its trajectory (Lgxo, Lyyo). When G is a Lie group the
conditions (c1).—(c3). are supposed to be realized. Similary to [1| the auxiliary constructions
are introduced:
1°. K,[By £ iacAg] = K,[Bo(0, 0, xo, yo, 0) £ iwAg (0,0, 2, Yo, 0)] =
= [By(0,0, Lyzo, Lyyo, 0) £ aAy(0,0, Lyzo, Lyyo)] L.

In fact, from (3.1) and (2.1), (2.2) it follows
KQ‘FJ;k (07 07 o, y()?g) = ‘FJ (07 07 Lgx07 Lgy(]?g)u

/
K F}! (0,0, 20, y0,€) = Fj'Lgx(Q Sngxo, Lyyo,e)Ly(x — o),
Ky 1y, (0,0,20,40,€) = F; (0,0, Lyxo, Lgyo,€)Lg(y — o),

KR (0, Yo, T — T0,Y — Yo, P1,P2,€) = Rj(Lyxo, Lgyo, Ly(x — 0), Ly(y — yo), Lgp1, Lgp2, €)
and the required relations follows from the relevant matrix representation of the operators By
and A, . Analogously the following relations can be required

/ /
2. Kyal) = KAt 0 e) = £ ( Jingtine e B ied) ) <
( _FQ;H(O, 0, Lyzo, Lyyo, ), FQ;Q (0,0, Loxo, Loyo, €)
F1,(0,0, Lowo, Loyo, €),  —F1,(0,0, Lowo, Lyyo, €)
3°. K R(z0, Yo, T — 20,y — Yo, P1, P2, €) = R(Lyxo, Lyyo, Lg(x — 20), Ly(y — Yo), p1, D2, €)
Consequently

(3.2)

= Ao(o, 0, Lg(L'Q, Lgyo, 8)

L u(l)(:vo Yo) + 1L u(l)(xo Yo)
SOk(L xo, L yo) =L QOk(ﬂ?o,yo) = g~1k ’ ) g~2k ’
’ ’ ! Lgu(l}c)(lha yo) + ZLQUS.:) ($07 Yo)

W(Lgzo, Lgyo) = L 'yk(wo, yo) k= 1,....n

(3.3)
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and for the range of operators Fj., Fy, one has

R(F,(0,0, Lyzo, Lgyo, o)) = R(KyF},(0,0, 20, 40, Ao) Ly ') = KgR(F.,(0,0, z0, 40, Xo)),
R(Fk;(oa 07 Lgx(h Lgy07 AO)) = R(Kng;(Ov 07 Lo, Yo, )\O)Lgl) = KgR(Fk,y(()) 07 Zo, Yo, )\O))

Then for the kernel of adjoint operator

NEB3) = (B3, ) = A ( Biao ) + il ) ) =

(1) (1) (1) (1) "
— epan Uip T War | ir [ V1 — ka ! _
P (1)+zv() T\ gty
U1k 2% 1k 2% P
* * d x—1 x—17 "
N<B0(Lgx07 Lgyo) + aAg(Lgxo, LgyO)E) = Span {Kg P, Kg wk}kzl

Analogously to [2], [7] it can be proved that the elements of the ordered by increasing lengths
GJChs of the operator-function By — u2ly = Bo(xo, yo) — #Ao(xo, yo) and biorthogonal to them
systems are transformating according with the formulae

oy (Lo, L) = Lyoy (20, 90) = [Lg(u}) (20, 30) + iy (20,90)), Lo (@3 (v0, y0) + iy (20, 30)]”.
N (Lgzo, Lyyo) = K (o, y0) =
= [K;k*l(vﬁ? (70, y0) + ivé?(wo, Yo)), K; 1(”52)(%, Yo) + ﬁé? (xo,yo))]Ta
W (Lgwo, Lyyo) = LZ_I%S)(IO, vo)s 22 (Lywo, Lyyo) = Ky (20, 90)
3.4
Lemma 3.1. Introduced in Lemma 2.1 projectors P(xqg,yo) and Q(zo,yo) satisfy mtertwi(mn;
properties

P(Lg'r0> Lgy()) = LgP(%, yO)Lg_l or LgP(ﬂio,yO) = P(Lgl’o’ Lgyo)Lg

_ 3.5
Q(Lyro, Lyo) = KyP (o, )Ry " or K P(ro,yo) = P(Lyzo, L), )

and generates the expansions (2.8) in direct sums. Moreover the bases in the zero-subspaces

N (Bo) and N(B;) and respectively in the root-subspaces H2X (0, y0) and Hox(z0,y0) can
be chosen so that the following relations would be satisfied:

H = H*(Lyzo, Lyyo) + H"2 (Lgao, Lyyo), N
HzK(L anLgyO) L, H2 (70, 0), HOO 2K( g20; gyO) LgHOOJK(Ioayo),
H = HQK(L xo, Lgyo) +7'[oo ok (Lyg T, Lgyo) _

HQK(L zo, Lyyo) = L 7‘[2K(Sﬁo,y0) so—2K (%0, Y0) = LgHoo—2k (%0, Yo),

(3.6)

I

The proof follows from the formulae (3.3), (3.4).

Theorem 3.1. (Group symmetry inheritance theorem.) A.Lyapounov (2.11) and
E.Schmidt (2.13) BEqRs inherit the group symmetry of the original system (2.1)

f(ngo, L9y07 Lgv(l’o’ Yo, gaz)a 22 5) = f((L!]xO? L_g@/Oa V(Lgx(]u Lgy07 g?E)a 2 g) = (37)
= Kgf('r(% Yo, V('TOa Yo, 57 5)7 y 5)7
t(Lgx()a Lgy07 Lgv(xm Yo, 575)7 1y E) - t((Lgx()a Lgy07 V(Lgx(h LgyO) 57 2)7 M, 8) -

- th(x()vyOaV(wOay07§>§)7,u75)- (38)
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Proof is essentially uses three-canonicity of the Jordan sets of the linear by p operator-function
By — 1Ay . According to (3.6) write the equation (2.7) in the bifurcation point (Lgxo, Lyyo) in
projections on the root-subspaces

[ — Q(Lgzo, Lgyo)|Bo(LgTo, Lgyo) =

— [~ QLyzo, Lyio) Lol Ly, Lyyo) -] + R(Lyto, Lygio, £1.1, [, 1,)},
0= Q(Lgl‘()a LgyO)%O<Lg$O’ LgyO)V(Lnga LgyO: 5’ 5)_

_Q<L9;E07 Lgyo)){,quo(Lgxo,_Lgyo) + R(ngm Lgy(h %[]7 []7 K, 6)}7

[. . ] = Z/{ —|— V(Lgﬂfo, Lgyo, f, f)

For the restriction %\o(fco, yo) = [I—Q(z0,v0)Bo(xo, yo) [ —P(z0,yo)] of the operator By (zo, o)
on the space H> 72K (zg,10) the following symmetry relation is realized

Kg%\o(xoa Yo) = K,[I — Q(x0,v0)]Bo(z0, y0)[I — P(z0, yo)] (3:2),(3.5)

(3.2),(3.5) 3.5)

[l — Q<Lgx07Lgy0)]%0(Lg$0> LgyO)Lg[I - P(Lgxongy(J)} (12
(3.5)

:/LI — Q(Lgwo, Lgyo)|Bo(Lywo, Lyyo)[I — P(Lgo, Lyyo)| Ly =
= %O(Lgxm LgyO)Lg

Then the application K ! to the first equation of the system gives

_1%\0(33073/0)”17/7 = %\o(l’o,yo)ll;la =
K T = Q(Lyo, Lyyo) {20 Lyo, Lyyo) -] + R Ly, Loy, 1.1, [ 1,e)}
[ (Lgx07 Lgyo)|Lg g {1Ao(Lgzo, Lgyo)|...] + R(Lyzo, Lgyo, %[---]7 []p,e)} Y

22 %\o(ﬂfo,yo)[glg = [l — Q(l’o,yo)]{ﬂmq[[/g_la+ V(ﬂfoayo,ff)
+R(CL’0, Yo, %[Lg_lu + V(I()a Yo, §7 5)]7 [Lg_lu + V<I07 Yo, §7 g)]? 22 8)}

OO
Cﬂ

According to implicit operators theorem we find the unique solution of the last equation in the
form L;lu = V(xo, Y0, V(0, Y0, &, &) 11, €)) , the substitution of which into the second equation of
the system gives A.Lyapounov BEqR in the point (L,xo, Lyyo) and its group symmetry (2.11)

f<Lgx07Lgy07V(x07y07£ Z) 2259 ) @(L xOuLgy())%O(L xOuLgy())V(L Lo, gy(]?gag)_
—Q(Lgzo, Lgyo){ o (Lgxo, Lgyo)[Led + V(Lgxo, Leyo, &, )]+

+R(Lg$0,Lg?Jo; ;[---]'[---],Mﬁ)} (3213-2) g@(ﬂﬁoayo)%o(xmyo)v(%,yo,fag)—
- gQ(xo,yo){uﬁo(l‘oyyo)[u(xo;yo) + V(%,yo,f f)] + R(xmyo, dT[ ~-]-[---]7M75)} =
=K f(x0>y075 6 € )

For the proof (3.8) write the equation (2.7) in the bifurcation point (Lyxo, Lyyo) in the form
of the system

Bo(Lyo, Loyo) Ly = 1o(Lywo, Lgyo) Ly + R(Lgzo, Lyyo, £ LY. V. 11, €)+
+ 2l W(Lywo, Lyyo) + €2 (Lyzo, Lyyo)],
&= (LY, % M(Lyo, Leyo)))s & = (LD, 75 (Lywo, Lyyo)))-

Setting LyY = w+ LV (0, Yo, &, §) = w+V(L,70, Lyyo, €, €) by virtue of group symmetry of the
operators %0 K %O(Io,yo)h = EB()(L l’o,Lgyo)L h Q[(),K Qlo(l‘g,yo)h = Qlo(L [Eo,Lgyg)L h

and R, (see auxiliary constructions) one has ’BO(L xo, Lyyo)w = K %O(xo,yO)L lw =
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Kg{,uglo(%o,?Jo)[L;l{l7 + V(wo,90,£,6)] + R($an07%[L51&7 + V($07y0a€75)7[151{17 +

V(x07y0»§7z>7u75>} whence it follows Lg_luﬂj = w(IU»ymV(x07y07§7g)7,u75)

or w = Lyw(ze,yo, V(0,v0,&,€),1,6).  Then from the second equation of
the system E.Schmidt BEqR (2.13) in the point (Lgxo,Lsyo) and its group
symmetry  follows  t(L,20, Lyyo, LyV (0, Yo, &, &), 1) = P(Lyxo, Lyyo)w (35
LgP(x07 yO)w(‘T(b Yo, V<:U07 Yo, 57 5)7 s 5) = Lgt(x(]? Yo, V(:EO? Yo, 57 5)7 1, 8)'

4. Basic Results

Theorem 4.1. (Implicit operators theorem under group symmetry conditions.)
Let under continuous group symmetry conditions (3.1) of the system (2.1) the requirements
(c1) —(c3) are realized, in the condition (c2) k =mn and Gs(a),s <l is the normal divisor
of Gi(a) with the relevant ideal Tgs(a) of generators. For the operator-function Bg — uly with
Fredholm operator By always can be chosen the complete three-canonical GJS to elements
of N (By). Then there exists the continuous function V(zo,vo,&, &, p,e) = V(zo,v0,&,€) +

U(zo, 0, V(0, Y0, &, €), 1, €) T;&) ( 53 ) X (—0,0) — 7—7, invariant with respect to the factor-

group G, =G, =G/Gs on T;{;) ( io ) , such that for the nonlinear operator F
0

F((00) 4 VanmeDme) =0 for Venw & eri (1) Fl<s @)

where the nonlinear operator F is defined by the equation (2.7).

Corollary. Theorem 4.1 is true for semisimple bifurcation points, i.e. at the absence of GJS.
Then here we have BEq.

Definition 4.1. [14] BEqR (2.11) (respect. (2.13)) is the BEqR of potential type
(A) if in a neighborhood of the point (xo,y0;0) for the vector f(z,y,v(w,y,& ), ue) =

(f11>7117 s 7f1p17f1p17 s >fn17fn17 .. ‘7fnpn7fnpn) the equa’hty

f(ﬂ?, Y, V(x7 Y, 575)7 Hs 5) =d- gradz,yU(x7 Y, 5757 Hs 5) (42)

is satisfied and potential type (B), when in in a neighborhood of the point (xo,yo;0)
f(x7 y? V(aj’ y7 575)7:[’67 6) = gradliij(‘r7 y7 é? E? /’L7 8) : d (4'3)

is satisfied where d is an invertible operator. Then the functional U(x,y,&,€), u,e) is the
potential of BEqR (2.11) (resp. (2.13)) and the operator § (resp. t) is pseudogradient of the
functional U .

In the case of BEqR (2.11) or (2.13) potentiality type (A) in previous our
articles [15], [16], [2] the necessary and sufficient condition of the L, -invariance of the potential
U is established. This is the equality L}d'K, = d~" for the A.Lyapounov BEqR (2.11) and
L;d_ng = d! for the E.Schmidt BEqR (2.13) . Also it is proved that the pseudogradient
f (resp. t) of the L,-invariant functional U is (L,, K)-(resp. (Lg, Ly)-) equivariant in the
sense (2.11) (resp. (2.13)) together with cosymmetric identities for the BEqR left-hand-sides.

In the same manner the respective results for BEqRs of the type (B) can be proved. These
are the equality K, ' = L} (resp. L;' = L) for the BEqR (2.11) (BEqR (2.13)) and the
relevant equivariance results with cosymmetric identities.
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Theorem 4.2. (BEqR reduction.) Let in suppositions (c1) —(cs) A.Lyapounov BEqR
(E.Schmidt BEqR) is potential type (A) or (B), its potential U(x,y,&,€), u,€) is invariant of
the representation Lgqy of the group Gi(a) and belongs to the class C? in some neighborhood
of the bifurcation point (xo,v0;0), s — the dimension of stationary subgroup of the element
(xo,%0) and Kk =1—5s>0. Then:

1.

10.

11.

if k=n, then for all (£(g),&(¢), u,e) or (V(xo,yo0,&(¢),&(€), p,€) in some neighborhood
of zero in =*" BEqR (2.11) (respect. (2.12)) is identically fulfilled.

if K <n and n > 2, then the partial reduction of BEqR takes place: at_the accepted
in the condition (cg) agreement on the basic elements enumeration in H?X the first
K. =p1+ ...+ ps equations are linear combinations of the others pei1+ ...+ pn .
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Dynamic bifurcation problems with E.Schmidt spectrum in
the linearization under group symmetry conditions
© B.V. Loginov*; 1.V. Konopleva®; L.V. Mironova®

Abstract. Results of the articles [1], [2] for stationary problems of branching theory with
E. Schmidt spectrum in the linearization are transformating on dynamic bifurcation problems
on E. Schmidt spectrum. On the base of general theorem on the group symmetry theorem on
the group symmetry of nonlinear problems inheritance by the relevant branching equations and
branching equations in the root-subspaces (BEqRs), moving along bifurcation point trajectory
implicit operators theorem under group symmetry conditions and theorem on BEqgRs reduction by
the number of equations in the case of variational BEqRs are proved. Terminology and notations
of the works [3]- [6] are used.

Key Words: Dynamic bifurcation problems, Poincare-Andronov-Hopf bifurcation; E. Schmidt
spectrum, group symmetry, G -invariant implicit operator theorem, variational type branching
equations in the root-subspaces.
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