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Polynomials based methods for linear nonconstant
coefficients eigenvalue problems
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Annotation. A method based on generalized Jacobi polynomials is proposed to solve the
eigenvalue problem governing the Lyapunov stability of the mechanical equilibria of certain fluids
occurring in complex circumstances. Two concrete natural convection problems of great interest
from the applications point of view are numerically investigated. Fairly accurate approximations of
the lower part of the spectrum are given in comparison with other numerical evaluations existing
in the literature.

Acknowledgement. This work was supported by the Grant 11/5.06.2009 within the framework
of the Russian Foundation for Basic Research - Romanian Academy collaboration.

AMS Mathematics Subject Classification (2000): 65L10; 65L15; 65L60;76EQ6.

Key words: Lyapunov stability; high order two-point boundary value problem; spectral methods.

1. Introduction

Spectral methods have been applied with great success to various physical problems from science
and engineering for which the evolution of perturbations is governed by linear or nonlinear
eigenvalue problems [1], [5], [6],[11], [13]. The main reason of their extensive use is the high
accuracy of these methods and the fact that the expansion functions usually have a basic
property: they are easy to evaluate either Fourier series based on trigonometric functions or
polynomials expansions are considered.

Usually the linearization process in a hydrodynamic stability problem increases the
conditions number of the problem making the solution more sensitive to small perturbations.
The resulting eigenvalue problem depends on the spectrum of the operator obtained by the
linearization of the mapping that define the initial and boundary conditions eigenvalue problem.

The use of classical Jacobi polynomials as trial functions in weighted Galerkin-type methods
is motivated by the fact that spectral approximations of the eigenfunctions in an eigenvalue
problems is usually considered as a finite expansion of eigenfunctions of a singular Sturm-
Liouville problem and Jacobi polynomials are in fact eigenfunctions of such a problem [2]. For
problems with singular or degenerated coefficients or some problems on infinite intervals the
Jacobi polynomials are of great interest [8], [9].

A dual-Petrov-Galerkin method based on Jacobi polynomials was introduced in [10] for third
and higher odd-order differential equations. It was proven that their use simplify the numerical
analysis of the spectral approximations. The Chebyshev and Legendre polynomials (regained
as particular cases of Jacobi polynomials) have been widely used in the literature with good
results in [4], [6],[12].

The main objective of the paper is to point out the major dependence of the approximations
properties of spectral methods on the choice of the basis functions. General Jacobi polynomials
based spectral methods for differential equations were not widely used in mathematical physics
problems. In |2] Jacobi-Galerkin methods for fourth - order equations in two dimensions are
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considered proving that for a suitable selection of the parameters «, 3 the resulting systems
of equations to be solved are diagonals, simplifying the numerical procedure.

As examples of applications, we considered two particular physical problems governed by
high-order differential equations with variable coefficients. The eigenvalue problem governing
the stability of the fluid motion in both cases has a general formulation

AU = Ra- BU, in Q 1)
CU =0, on 99 '

with A, B nonconstant elements matrix high order differential operators and C' a linear
differential operator defined on the boundary 0f2 of the domain of definition € by

C(U, DU) = 0. (1.2)

This paper is organized as follows. In this section we introduce some generalized Jacobi
polynomials [2| and motivate their use for the approximation of the orthogonal projection on
some Hilbert space for our type of problems. The second section is devoted to the analytical
and numerical applications of the proposed method to the particular physical problems. Some
final remarks are given in the conclusion section of the paper.

Let us introduce the differential operators A, B from (1.1)-(1.2). In both cases, the general
formulation of our problems leads to the two-point boundary value problem

(D? = a®)*W = [(2)0,
{ (D? — a*)® = —a®Rag(2)W, (13)

_ ((D? = a])? f(2) B @] O "
so A = ( 0 (D? — a21) and B = —a2g(x) 0) The boundary conditions

defining the operator C' have the form
W=DW=0=0at z=0,1. (1.4)

Here f, g are two indefinitely derivable functions characterizing the basic flow, W, © the
amplitudes of the velocity and the temperature perturbation fields, (W, 0) representing the
corresponding eigenvector for the eigenvalue Ra .

A suitable approach imply a transformation of the physical domain onto the standard
interval of definition of Jacobi polynomials, i.e. x =2z — 1, such that the boundary conditions
are written at —1 and 1

W=DW=0=0at x=—1,1. (1.5)

The weighted residual method proposed here imply a spectral expansion of each component
of the eigenvector using combination of generalized Jacobi polynomials functions that satisfy
the boundary conditions (1.4).

Let us recall that the Jacobi polynomials P*“(z), n > 0 are defined by the Rodrigues
formula [9]

(1—2) (1 +2)"D"[(1 — z)*T"(1 + 2)5*"], (1.6)

) d
with D = o and «,  two complex parameters.
T

The classical Jacobi polynomials associated with the real parameters «,3 > —1 are a
sequence of orthogonal polynomials, i.e.

1
| Ped )P @) e = 939 (1.7

1
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with w®?(x) = (1 — 2)*(1 + z)? the Jacobi weight function, §,,, the Kronecker symbol and

ap _ 2T(n+a+1)T(n+5+1)
= 2n+MNC(n+1DC(n+A)

s, A=a+ G+ 1.

Jacobi polynomials can also be defined using (1.6) for a,3 < —1. However, the main
property used in numerical applications, the orthogonality in Liaﬁ for all a, B of these
polynomials it is no longer valid.

Following [11] to account for the homogeneous boundary conditions, let us define the space
Py of all polynomials of degree less or equal to N, N = 1,2,.... We are interested in the
construction of an approximation space of the form M = {v € Pylv = Dv =0 at v = £1}.
Let us introduce the functions ¢, € M, k=1,2,..., [9]

px) =1 -2 P (x), k=1,...,N

which fulfills the boundary conditions (1.4). Using the properties of the Jacobi polynomials it
is easy to verify that the functions ¢i(z), 0 < k < N — 4, are linearly independent and the
dimension of the corresponding generated space N = span{py(z),...,on_a(z)} is equal to
N — 3. In fact, these function can be viewed as generalized Jacobi polynomials [2| since we can
write

p(z) = (1= 2)*(1+2)* PP (x) = PyP (2).

The above expression point out that a certain type of indexes for generalized Jacobi polynomials
must be used. In fact, in [12]| it was proven that when developing and analyzing Chebyshev
spectral methods for boundary value problems the generalized Jacobi polynomials with indexes

(—1/2 —k,—1/2—1), k,l € Z are the most convenient choice.
N—4
Let us introduce the expansion series W = Z Wier(z), © = Z Orpr(z), with Wy =

(W, or(z)) and ©f = (O, pi(z)) and the scalar product (+,-) taken Wlth respect to the Hilbert
space L2, ;.

Replacing the expansion functions in the system (1.3) and imposing the condition that the
equations in (1.3) be orthogonal on {;},—1. n_4 leads to an algebraic system in the unknown
coefficients W}, ©,. Not all these coefficients vanish so the condition that the determinant of
the algebraic system be equal to zero leads to the secular equation which gives us the critical
values of the Rayleigh number.

The formulas for the Jacobi coefficients of all the derivatives of the functions occurring in
(1.3) can be found in |2].

2. Particular physical convection problems

We considered two concrete physical cases: one concerning a convection problem for a variable
gravity field [6] and the other one for a convection problem with an internal heat source [4].

2.1. A convection problem with variable gravity field

The convection problem investigated in this section arises in a horizontal layer of fluid heated
from below for a variable gravity field. The gravity field varying across the layer can be
considered linear or not [5|, [6]. Here our investigation concerns only a linearly decreasing gravity
field orthogonal on the fluid layer and assumed to depend on the vertical coordinate z only
[13]. The linear stability against normal mode perturbations is governed by a two-point problem

MVMS journal. 2009. V. 11, No. 2



Polynomials based methods for linear nonconstant coefficients eigenvalue problems 167

for ordinary differential equations of the form (1.3) with f(z) =1 —¢ez and g(z) = 1, with
¢ the scale parameter for the variable gravity field. The analytical and numerical investigation
of the problem was also performed in [3], using a shifted Legendre polynomials based method
for the case of linear stability of the mechanical equilibrium of the fluid layer. In this paper
we apply the above described method for various cases of the parameters defining the Jacobi
polynomials. The chosen basis of expansion functions leads to sparse matrices, with banded
submatrices whose size are equal to the number of generalized Jacobi polynomials used in the
expansions.

Numerical evaluations of the Rayleigh number for various values of the wavenumber and
various linear decreasing gravity fields are presented in Table 1 in comparison with previous
results obtained also by us for either trigonometric expansion functions or shifted Legendre
polynomials. The following physical conclusion is pointed out: the stability domain increases
as the gravity field is linearly decreasing across the layer.

£ a®> | Ragp——1/2 | Raap—0 | Ragp_1/2 | Rairigl0] Raspp|6]

0 9.711 1730.0 1748.5 1743.9 1715.079356 | 1749.975727
0.01 | 9.711 1738.8 1757.2 1752.8 1723.697848 | 1758.769253
0.2 | 9.711 1922.2 1942.3 1937.5 1905.643719 | 1944.243122
0.2 12.0 1951.3 1969.6 1965.1 1937.927940 | 1977.079049
0.2 14.5 2037.1 2053.9 2049.9 2026.289430 | 3475.507241

1 10.0 3434.5 3470.8 3461.8 3431.318766 | 3475.507241

Table 1. Numerical evaluations of the Rayleigh number for various values of the parameters £ and
a and various parameters «, (3.

It is clear that for the same small value of the spectral parameter, N = 3, the numerical
results obtained here are similar, but not the best. However, we remarked that the necessary
computational time is significantly reduced in this case.

In Table 2 the numerical evaluations of the first and second eigenvalue, respectively, are
presented for increasing values of the spectral parameter N . The results are obtained for the
classical Rayleigh-Bénard convection and they show a quite good agreement with previous
existing values for the critical Rayleigh number.

N | Ra Ray
2 |1 1790.0 | 27286
5 | 1757.2 | 25801

10 | 1729.7 | 25443

12 | 1726.6 | 25326

14 | 1724.6 | 25306

15 | 1724.5 | 25272

Table 2. Numerical evaluations of the first and the second eigenvalue for o = 3 =0, a® = 9.711,
¢ = 0 for various values of the spectral parameter N .

The decreasing of both eigenvalues to well known numerical values with an increasing N
marks a numerical convergence of the algorithm (Fig. 1 a), b)).
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Fig. 1. The decreasing values of the first and the second eigenvalue Ra for an increasing spectral
parameter N .

2.2. A convection problem with an internal heat source

The motion in the atmosphere or mantle convection in the Earth are two among phenomena of
natural convection induced by internal heat sources. Natural convection occurring in industrial
devices by internal heating [14] is another example for which an investigation of the effect
of internal heat generation on fluids flows is needed. All these motions bifurcate from the
conduction state as a result of its loss of stability. In spite of their importance, due to the
occurrence of variable coefficients in the nonlinear partial differential equations governing the
evolution of perturbations around the basic equilibrium, few systematic studies were performed.
Most of the investigations only consider the much simpler case of uniform heat generation. In
[15] experimental investigations were carried out pointing out that a dilation of convection
cells occurs with an increasing rate of internal heat generation. The physical model of natural
convection in the presence of an uniform internal heat source, investigated in this paper,
concerning a horizontal layer of viscous incompressible fluid with constant viscosity and thermal
conductivity coefficients v and k, was also treated in [16]. Veltchiev [16] focussed on the vertical
distribution of the total heat fluxes and their individual components for small and moderate
supercritical Rayleigh number. An analytical investigation of the eigenvalue problem deduced
by us in [4] was performed in [7]. Here we are concerned with the approximative numerical
evaluations of the critical Rayleigh number at which the instability sets in. These results
obtained for various types of polynomial approximations when generalized Jacobi polynomials
are considered, are presented in comparison with the ones obtained by using other type of
polynomials (Table 3).

The associated eigenvalue problem in a horizontal fluid layer bounded by two rigid walls,
governing the stability of the basic motion against normal mode perturbations, deduced by us in
[4], has the form from (1.3) with f(z) =1 and g(z) = 1 — Np.z. The eigenvalue is the Rayleigh
number R and Ny, is a dimensionless parameter characterizing the heating (cooling) rate of
the layer. Although it looks like a simple switch in the expression of the unknown functions f

and ¢ this new model support most of the times a different approach from the first benchmark
model [7].
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Npe | a® | Ragp—_10 | Ragp—o | Ranyl7] | Raspp[5]
0 |9.711 1730.2 1780.9 | 1708.54 | 1715.079324
1 | 9711 | 1727.04 1745.3 | 1651.04 | 1711.742588
2 |9.711 1717.5 1735.9 | 1609.12 | 1701.891.001
1 | 10.0 1727.1 1745.1 | 1651.1 | 1712.257687
4

4

10.0 1680.6 1696.4 1560.8 | 1664.341789
12.0 1699.4 1699.7 1739.2 | 1685.422373

10 9.0 1503.2 1524.6 | 1366.02 | 1482.527042
11 9.0 1468.0 1489.4 | 1366.05 | 1446.915467
12 9.0 1432.7 1454.2 1354.7 | 1411.401914

Table 3. Numerical evaluations of the Rayleigh number for various values of the parameters Np,
representing the heating (cooling rate) and a and various types of polynomials.

3. Conclusions

A family of generalized Jacobi polynomials with indexes («, 3) of the form (—1/2—Fk,—1/2—
k), k € Z is proposed in order to solve a class of eigenvalue problems governing the linear
stability of the mechanical equilibria of certain types of fluids motions. For boundary conditions
corresponding to rigid boundary surfaces case, Fourier series based on the proposed generalized
Jacobi polynomials basis led to a good numerical algorithm. In general, the method can be
successfully used for spectral approximations of differential equations with suitable boundary
conditions which are automatically satisfied by the expansion functions. Orthogonal families
of generalized Jacobi polynomials can be constructed starting from the proposed one with a
large applicability to solve partial or ordinary differential equations with constant or varying
coefficients.

In spite of the existence of many theoretical bases, the complexity in reducing the
computation of the critical Rayleigh number using spectral methods comes from the necessity
that these functions satisfy all less simpler boundary conditions.
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