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Abstract. We describe the continuous operator method for solution nonlinear operator equations
and discuss its application for investigating direct and inverse scattering problems. The continuous
operator method is based on the Lyapunov theory stability of solutions of ordinary differential
equations systems. It is applicable to operator equations in Banach spaces, including in cases when
the Frechet (Gateaux) derivative of a nonlinear operator is irreversible in a neighborhood of the
initial value. In this paper, it is applied to the solution of the Dirichlet and Neumann problems for
the Helmholtz equation and to determine the wave number in the inverse problem. The internal and
external problems of Dirichlet and Neumann are considered. The Helmholtz equation is considered
in domains with smooth and piecewise smooth boundaries. In the case when the Helmholtz equation
is considered in domains with smooth boundaries, the existence and uniqueness of the solution
follows from the classical potential theory. When solving the Helmholtz equation in domains with
piecewise smooth boundaries, the Wiener regularization is carried out. The Dirichlet and Neumann
problems for the Helmholtz equation are transformed by methods of potential theory into singular
integral equations of the second kind and hypersingular integral equations of the first kind. For an
approximate solution of singular and hypersingular integral equations, computational schemes of
collocation and mechanical quadrature methods are constructed and substantiated. The features of
the continuous method are illustrated with solving boundary problems for the Helmholtz equation.
Approximate methods for reconstructing the wave number in the Helmholtz equation are considered.
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1. Introduction

The continuous operator method for solving nonlinear operator equations was proposed
in [1]. It proved to be useful not only as a numerical technique of solving nonlinear
problems which does not require any derivative calculations, but also as a tool of theoretical
investigation which made possible to prove some existence theorems for the solutions of such
problems [2].

Even though the full strength of the continuous operator method emerges in nonlinear
problems, some linear problems — such as wave scattering — provide an instructing illustration
of the method and its possible applications. In this paper we apply the method to boundary
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problems for the Helmholtz equation on the base of integral equations of the first and second
kind. Besides, we apply the method to inverse problem for Helmgoltz equation.

In [3] it is noted that equations of the first kind are practically not used to solve the
Helmholtz equation.

Traditionally, diffraction problems are modeled by Fredholm boundary integral equations
of the second kind. As noted in [4], this approach does not allow simulating wave diffraction
on thin screens, since this requires the fulfillment of the boundary condition on both sides
of the surface.

Recently, hypersingular integral equations of the first kind [5; 4; 6; 7] have been involved
in solving scattering problems. In the papers [6; 7], when solving the Helmholtz equation,
the singularities of the hypersingular integral are regularized and the collocation method is
applied to equations with weakly singular and smooth kernels.

In the work [4], when constructing a computational scheme, a feature of the kernel
of the hypersingular operator is used. In this case, authors write down the corresponding
hypersingular integral equation in the form

1 g 0 1

(e

1 o 9 [eklt—l 1

+E x(T) {871,58717 [ T T T|” dr = f(t),t € o,
[eg

where z(t) is the required function; f(¢) is the given function; n; and n, are unit normals.

In this paper, to solve the Helmholtz equation with the Dirichlet and Neumann boundary
conditions, integral equations of both the first and second kind are used. A comparison (in
terms of accuracy) of the results obtained is carried out. A numerical experiment is carried
out for solving the Helmholtz equation in a domain with a piecewise-smooth boundary using
Wiener regularization. A comparison is made of the results of solving the Helmholtz equation
in a domain with a piecewise smooth boundary with and without Wiener regularization.

The aim of the work is: construction, on the basis of a continuous method for solving
operator equations, numerical methods for solving the Helmholtz equation, represented by
integral equations of the first and second kind, comparison in accuracy of solutions of
boundary value problems for the Helmholtz equation modeled by integral equations of the
first and second kind, construction of a new method of justification approximate methods
for solving hypersingular integral equations. Besides we solve the problem of restoration the
wave number of Helmgoltz equation.

We shall see that for more singular problems the continuous operator method not only
converges to the solution, but can also outperform direct solvers.

2. Continuous operator method

Consider an equation

A(z)— f =0, (2.1)

where A(x) is a nonlinear operator mapping from Banach space X to X.

Let x* be a solution of the equation (2.1). In [1] the connection between stability of
solutions of operator differential equations in Banach spaces and resolving operator equations
of the form (2.1) has been established. Here we shall summarize the results on the method.
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Let B be a Banach space, a,z € B, K be a linear operator mapping from B to B, A(K)
be the logarithmic norm [8] of the operator K, and I be the identity operator. We shall use
the following notation:

B(a,7)={z€ B :||z—a| <r},
S(a,r)={z€ B:|z—a| =r},
ReK = Kr = (K + K*)/2,
ACK) = lim(| 1+ hE] = 1)/

Logarithmic norm examples. Let a complex matrix A = {a;;}, 4,5 = 1,2,...,n, be given
in n-dimensional space R™ of vectors x with the norms

n
lzlly =) lewl,
k=1

n

]2 = le 2,

and
Jalls = max fo

The corresponding logarithmic norms of the matrix A then read [9]:

Av(4) = max(Re(azg) + 3 lais]);
i=1,i#j
2

T
AQ(A) = )\max (M> P

n

A3(A) = miax(Re(aii) + Z |a”|)
j=1,j#i
Here Apmax(Z) stands for the real part of the largest real part eigenvalue of the matrix Z.
Let us associate the equation (2.1) with the following Cauchy problem

dx(t)
dt

= A(z(t)) - £, (2.2)
2(0) = xo. (2.3)

Theorem 2.1 (Boikov, [1|) Let the equation (2.1) have a solution z* and on any
differentiable curve g(t) in Banach space B the inequality is valid

t

lim ! A(A (g(7))dr < —ay, ay > 0. (2.4)

t—oo t
0

Then the solution of the Cauchy problem (2.2)—(2.3) converges to the solution z* of the
equation (2.1) for any initial approximation.
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Theorem 2.2 (Boikov, [1]) Let the equation (2.1) has a solution x* and for any
differentiable curve g(t) in a ball B(xz*,r) the following conditions are satisfied:
1) for any t(t > 0)
t

A(A'(g(T))dr < 0; (2.5)

2) the inequality (2.4) is valid.
Then the solution of the Cauchy problem (2.2)—(2.3) converges to a solution of the
equation (2.1).

Notation 2.1 In the inequality (2.4) it is assumed that the constants ag > 0 can
differ for different curves g(t).

Notation 2.2 From inequalities (2.4)—(2.5) it follows that the logarithmic norm
A(A'(g(7)) can be positive for some values of T; i.e. the Frechet derivative A’'(g(7)) can
degenerate into an identically zero operator along the curve.

Notation 2.3 An example in [2] (an approzimate solution of a hypersingular
integral equation) has demonstrated convergence of an iterative process based on a continuous
operator method when the Frechet derivative vanishes at the initial approrimation.

Notation 2.4 Logarithmic norm has the property which is very useful for
numerical analysis.

Let A, B be square matrices of order n with complex elements and © = (z1,...,z,),
y= (1, yn), £ = (&,---,&), n = (M,...,nn) are n-dimensional vectors with complex
components. Let us consider the following systems of algebraic equations: Ax = £ and
By = n. The norm of a vector and its subordinate operator norm of the matrix are fixed;
the logarithmic norm A(A) corresponds to the operator norm.

Theorem 2.3 (Lozinskii, [10]) If A(A) < 0, the matriz A is non-singular and
A=Y < 1/|A(A)].

Theorem 2.4 (Lozinskii, [10]) Let Ax =&, By =n and A(A) <0, A(B) < 0. Then

l¢=nll , A= B
A) T ACHAE)]

[z =yl <

Main properties of the logarithmic norm are given in [8].

N otation 2.5 Thelogarithmic norm of the operator K can have different (positive
or negative) values in different spaces.

Described above continuous method for solving nonlinear operator equations admits the
following generalization.

Let us return to the equation (2.1). Denote by A’(zg)z the Gateaux (Frechet) derivative
on a element xy. We introduce the equation

(A'(20))" A(z) — (A'(20))"f = 0. (2.6)
Equation (2.6) is associated with the Cauchy problem
PO (A w0)) Alw) — (A 0))" D) (2.7

U. B. Boiikos, B. A. Pyxues, A. . Boiikosa, H. C. Crennanos. IIpuMenenne HEIPEPHIBHOI'O OIIEPATOPHOIO . . .



2Kypnas CpenaeBoJizKcKOro maremarudeckoro obmiecrsa. 2021. T. 23, Ne 3. 251

x(0) = xo. (2.8)

If As(A'(20))*A'(xo)) > 0, then in some neighborhood B(xg,r) of the element x
logarithmic norm Ag(A’(x9))*A’(x)) will be positive. Therefore, there is a time interval
[to, t1] in which [Jz(t1)| < ||z(0)] for to < t < ¢;. Here z(t) is the solution to the Cauchy
problem (2.7)—(2.8).

For ¢t > t1, consider the Cauchy task

di(t) _
dt

—((A' (1)) A(2(t)) — (A'(21))" f), 21 = x(t1), (2.9)

I(tr) = x(t1) (2.10)

and define the segment [t1, t2], in which Ao ((A'(Z(t1)))*A(Z(t))) > 0 and ||z(t2)]] < ||z (t1)]|-

Continuing this process, we have lim ”‘“(t)“

= 0 and therefore hm z(t) = a*.
t—o0

Theorem 2.5 Let equation (2.6) have a solution x* and for any differentiable curve
in B the inequality

[ sl alr)y A a()yar > (211)

Then the solution of the Cauchy problems ((2.7)—(2.8)), ((2.9)—(2.10)), etc. converges to the
solution x* of the equation (2.6).
If the conditions of Theorem 2.5 are not satisfied, the regularization is carried out

PO — —alt) — (A ()" Al) — (A (0)" )

on segments [tg,tx+1],k = 0,1,..., in which As((A'(z(tx)))* A (x(t))) > 0,t € [t trr1]-
Here « is a parameter of regularization.

3. Integral equations of the first kind
Consider the Helmholtz equation
Au + k*u =0, (3.1)

where k = || k|| > 0 is the wave number corresponding to some wave vector k.
We look for the solutions that can be presented as a superposition of an incident plane
wave and a scattered wave
u = ug(z; k) + a.

ug is a plane wave, 4 is a the scattered spherical wave satisfying the radiation condition.
The interaction of an incident wave with a scatterer can be modelled with homogeneous
boundary conditions that lead to standard boundary problems for a domain D with
a boundary 9D € Cs.
Dirichlet interior problem. Find u € C?(D) N C(D) satisfying the Helmholtz’s equation
in D and the boundary condition

U= f|0D, (3.2)

where f is a given continuous function.
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Dirichlet exterior problem. Find u € C?(R*\D) N C(R*\D) satisfying the Helmholtz’s
equation in R?\ D, Sommerfeld’s radiation condition at infinity, and the boundary condition

u= flop, (3.3)

where f is a given continuous function. -
Neumann interior problem. Find u € C?(D) N C(D) having the normal derivative
everywhere on 0D, satisfying the Helmholtz’s equation in D, and the boundary condition

du

= = flop, (3.4)

where f is a given continuous function, n is the unit normal vector.
Neumann exterior problem. Find u € C%(R?\D) satisfying the Helmholtz’s equation,
Sommerfeld’s radiation condition, and the boundary condition

du
= flop, (3.5)

where f is a given continuous function, n is the unit normal vector.
Let ®(x,y) be the fundamental solution of the Helmholtz’s equation in R3:
1 etklz—yl
@ Zz, 7k = T T
(@,y:k) = P

z, y € R3, or for z, y € R?
i
e,y k) = (Hy' (Kl —yl).
where Hél)(z) stands for the Hankel function of the first kind. The following statements
hold [3].

Theorem 3.1 (see D. Colton and R. Kress, [3]) A simple-layer potential

ulz) = / B(z, y: K)p(y)ds(y), « € RO\AD, (3.6)
oD

with continuous density ¢ solves the Dirichlet problems (3.2) and (3.3), if ¢ is a solution of
the integral equation

/ B(x, y; K)p(y)ds(y) = f(x), = € OD. (3.7)

oD

Theorem 3.2 (see D. Colton and R. Kress, [3]) A double-layer potential

uw) = [ FEEE sty « € R\0D (3.5)

with density ¢ solves the Neumann problems (3.4) and (3.5), if ¢ is a solution of the singular

integral equation
0 / 0P (x,y; k)
on(x) on(y)
aD

o(y)ds(y) = f(x), © € dD. (3.9)

U. B. Boiikos, B. A. Pyxues, A. . Boiikosa, H. C. Crennanos. IIpuMenenne HEIPEPHIBHOI'O OIIEPATOPHOIO . . .



2Kypnas CpenaeBoJizKcKOro maremarudeckoro obmiecrsa. 2021. T. 23, Ne 3. 253

Notation 3.1 Theorems 3.1 and 3.2 are valid under the assumption that the
boundary 0D belongs to the space C?. If this condition is wviolated, it is necessary to
construct a generalized solution. One of the ways to construct generalized solutions is
Wiener regularization. It is as follows. Let us describe the Wiener reqularization of interior
problems with Dirichlet and Neumann boundary conditions. Since the construction of the
reqularization is carried out in the same way for the Dirichlet and Neumann boundary
conditions, we will dwell on the consideration of the Helmholtz equation with Dirichlet
boundary condition. Let {D,,} be a sequence of domains with infinitely smooth boundaries
that approzimates the domain D, and D,, C D,,41 C --- C D. This inclusion implies
that any point P € D for sufficiently large m belongs to D,,. Let F(x) be a continuous
function in D that coincides with f(x) on the boundary dD. Let us denote by um,(z) the
solution of the Dirichlet problem for the Helmholtz equation under the boundary condition
Um (2)|op,, = F(x). It follows from Theorem 3.1 that such a solution exists. The Wiener
generalized solution to problem (3.2) is the limit uy(x) = limy,—oo Um(x),z € D if such
a limit exists and does not depend on the choice of the sequences D,, and the way to build
them.

A large number of works have been devoted to the construction of generalized solutions
of equations of mathematical physics, of which we will present review works: [11-12].

4. Numerical approach and illustrations

Let us apply the method to the Dirichlet problem for the Helmholtz equation in R2.
i
1 [ H e = De)asty) = £(a). x € 0D, (@)
oD

where D is a closed bounded domain.
Consider a set of points x;, [ = 1,...,n distributed over the surface 9D. An approximate
solution of the equation (4.1) is sought as

en(y) = anti(y),
k=1

where 1, (y) are basic functions defined on 9D and, possibly, localized in the vicinity of the
points x;, [ =1,...,n.

We associate the following system of approximate collocation equations with the
equation (4.1):

S
> aig / HEY (Ko — yl); (y)ds(y) = f(x1), (4.2)
7=t D
l=1,...,n.
Here z;, I = 1,...,n are the collocation points.

Replace integrals in the left-hand side of eq. (4.2) with a quadrature formula. Finally, it
yields the system of equations

> Rija;=f(m),l=1,...,n, (4.3)
J=1
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where R;; = Z va (k|wl Yu|)¥;(yo). Here p,,v =0,...,n4 and y,,v =0,...,n4 are

the weights and nodes of the quadrature formula.
According to the continuous operator method, we associate the equation (4.3) with the
following system of differential equations

do‘l ZRU% @), l=1,...,n. (4.4)

The values of
B = _etarg(Ru) Jl=1,. (4.5)

are chosen so that the logarithmic norms A; or A3 are minimized.

Negative logarithmic norm of the matrix in the right hand side of (4.4) guarantees that
the solution of the differential equations system converges to the solution of the system (4.3)
as t — oo.

The system (4.4) can be solved by any numerical method. Model examples are solved by
Euler or Runge-Kutta methods.

Computational schemes for solving the Helmholtz equation with other boundary
conditions are constructed similarly.

Let us stay in more detail on the construction of a spline-collocation computational
scheme with zero-order splines for solving the 3D Dirichlet problem for the Helmholtz
equation

1 etklz—yl

To g PWdsy) = f(@), x €D (46)

Without loss of generality, we will assume that D is a star-shaped surface centered
at a point x* € D.

Let’s triangulate the surface D with triangles «close» to equilateral. When constructing
a triangulation, we require that the vertices of the triangles lie on the surface dD. Let
us denote these nodes as xp,k = 1,2,..., Ng. Triangulation algorithms are described in
sufficient detail in the works [13], [14].

As a result, the surface 9D is approximated by the surface 9Dy, and the equation (4.6)
is approximated by the equation

ik|z—yl
& | Goreast) = fe). o, @)
ODn

An approximate solution to the equation (4.7) will be sought in the form of a function

N
y) = arti(y), (4.8)
k=1

where A
_ Y € A,
1/%(1/)—{ 0, yeaDN\Ak,

k=1,2...,N; A is a element of the surface 0D .
Denote by Zx a point belonging to Ag. As such a point, you can take the center of a circle
inscribed in a triangle Ag.
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The coefficients oy, of the function (4.8) are determined from the system of linear algebraic
equations

N . —
1 ezk|xj—y|
- - d = f(z* 4.9
3 [ o dst) = 1) (19)
=15,

j=1,...,N.

Here the point z7 is intersection of the straight line passing through the points z* and
x; with the surface Aj.

A simpler, but less accurate computational scheme has the form

N .
1 etk1Zi—uil 1 etk Z;—yl .
121 meS(Az)JrM/ajﬁjde(y) = f(Z5), (4.10)

j=1,...,N.
N
Here mes(A,;) denote the square of the triangle A; and by >/ is indicated that [ # j.

=1
We will demonstrate the method of substantiating the spline collocation method using

the computational scheme (4.9).

T heorem 4.1 Let the following conditions be satisfied:

1) The equation (4.6) has a solution p*(x) for the given right-hand side;

2) The logarithmic norm of the matrix An on the left-hand side of the system of equations
(4.9) is negative in the metric of some Banach space B and A(An) < —vo for all N > Npy;
3) D is a star-shaped surface centered at a point x* € D;

4) The solution p*(y) of the equation (4.6) belongs to the class of functions W2(M) having
continuous derivatives of the first order and piecewise continuous derivatives of the second
order bounded in modulus by the constant M ;

5) The surface D is a Lyapunov surface.

Then the system of equations (4.9) has a unique solution @i (y) converging to ¢*(y) for
N — oo.

Remark 4.1 Note that, in contrast to the many well-known methods of
substantiating approzimate methods for solving integral equations, here only the solvability
of the considered equation with the given right hand part is required.

Proof.

Since the logarithmic norm A(Ay) of the matrix Ay is negative for N > Ny, the
Theorem 2.3 implies the unique solvability of the system of equations (4.9).

Let us denote by ¢*(z) a solution of the equation (4.6). Then

1 etklz—yl

oy Wdsy) = fl@), zeID. (4.11)

Draw planes from the point z* through the vertices xj of the triangles Ay to the
intersection with the surface dD. The surfaces that cut out the constructed planes from
dD are denoted by Dy, k=1,2,...,N.

Then the equation (4.11) can be represented as

pikla— y|

Z —— " (y)ds(y) = f(z), =z €D, (4.12)
Am Iw e
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At the points z},j =1,2,..., N we have

zk:\z

472/ G 7y| (y)ds(y) = f(z5), j=12,...,N. (4.13)

The difference between the equations (4.9) and (4.13) can be represented as follows

N ik|z;—y|
1 eririTy s
in ﬁ(@zv(y) — @1 (y))ds(y) =
=14, i~y
1 N eik|fj—y| . d
= i 2 m‘ﬂl (y)ds(y)— (4.14)
- 1
&tk1Z5 —yl .
— e (y)ds(y)| . j=1,....N
|5Cj =yl

)

Here ¢ (y) is the linear function taking values ¢*(y) at the vertices of the triangle
Al=1,2,...,N.
We introduce the notations

N —

1 ezk\;cj y| ~
95 = 1= - @1 (y)ds(y
J 4 lzzl |xj — y‘ l( ) ( )

i
4.15
eikla; =l (4.15)
|.’Z'>’f y| 90 (y)ds(y) ) .] - 17 7N
J

8D,

Let’s start evaluating the expression ¢2¥.

Without loss of generality, we can assume that the function ¢*(y) has continuous second-
order partial derivatives in the domain D, bounded in modulus by the constant M.

Starting to estimate g]N , we first estimate the term

L[ ity - = [ S yisty)
11:—/ _7¢*ydsy——/ — ¢ (y)ds(y).
Am Ja, |25 =yl Am Jop, 1Z5 —yl

Without loss of generality, we can assume that the triangle A; lies on the plane OXY.

Let be x = (21,72, 73),y = (Y1, Y2,Y3)-

We will assume that the surface 0D); is described by a function ys3 = ¥;(y1, y2), (y1,y2) €
S A]a.] = 1727 . 7N7¢j(y17y2) S WLl(M)-
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Then

ik|Z;—y|

" (y)ds(y)|+

1 oikE Ul _
L=t /' -
w) o

D;

+|L/eik\ozj—y\ LI
dm 1z -yl

1z; -yl

! ) " (y)ds(y) |+

aD;
1 / k1% —yl 1 ekl 25—yl
+|— %w*ydsy——/i ds
5 ] o e - g [ e W)l =
aD; A
= I + o + I13.
It is not hard to see that
(y ds( C
I, < *\ / i‘;‘— ﬁ’
||z —|z5 —yll
I, < C| / ds(y)| <
|75 *yII%*yI
Ixz —zr(DINZ; () — wal + 12:(5) — il )Y/2
< / - ds(y)| <
|Z5 — yllz; —
C
= 1/2| _ 1/2 _ <5
=N \x yI va y = N

Here we have used folowing notations z; = (Z1(j), Z2(j), Z3(J))-

Let us introduce the notation v = (v1,v2,v3),v1 = y1,v2 = Ya,v3 = ¥ (Y1, Y2)-
We transform the integral
1 eik|ij7y|
— | T W)ds(y)| =
5 [ e )
oD;
1 eik\ijfﬂ aw 81/) o1
— * /2
= |— T E— v + dS
3 | T 0+ G + (G st
Aj
Then
1 eik\a’cj—v| _ eik|§:j—y| 8’(/) 8’¢
Liy=|— - W)L+ (5—)% + (7)) 2ds(y)|+
i l‘”A/ T WL (G + (5 s ()
| 1 I R
H— [ Myl - = WA+ () + ()2 +
3 [ e e O G (G

A

1 eiklz;—yl ) oY, 87111)2)1/2 1

+—= | = +(5—)"+ *(v)ds(y)|+
) T e G "))l
! ciklzj—ul o
+|ﬁdf T @ (v) = &7 (y))ds(y)| =
= Iiz1 + -+ liaa.

(4.16)

(4.17)

(4.18)

(4.19)
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Let’s estimate each term separately:

(3277 + (52
8 1 0
Iy < Olla — o] - —y|||/ e sy)| <
(4.20)
C ds(
< N| f |r,—y1))| z5
T;—v|—|z; —yl|ds
T <C‘/ 1z |, y”; y1|)| W) _
j
|1/) y1,92) |1/2(|$3( D +123() — ¥y, y2)]) ' *ds(y)
<C| - = (4.21)
75 —yllz; — vl '
C
<C
'/ il S W
C ds(y) C
Iigs < N/ 7, — ol < Nz (4.22)
Aj
C ds(y) C
Ly < N_/ 75 — ] < Nz (4.23)
A
From the inequalities (4.19) - (4.23) we have
C
L < e (4.24)
Collecting estimates (4.17)—(4.18), (4.24), we arrive at the inequality
C
L<. (4.25)
Let us estimate the summ
N .
1 ezklxj—y|
I,=— — & (y)ds(y)—
2= D V) m=a® (y)ds(y)
=115 |§,

/ ik|z;—y| (0)ds(y)

- — " (y)ds(y)|,7=1,...,N.
]z =yl

oD,

Repeating the above reasoning, we arrive at the following estimate I < C—7
From estimates for Iy, Is we have gJ < Cm

It is not hard to see that limy o maxi<j<n |g] (z)| = 0. Hence and from the inequality
|A7Y| < 1/]y0| implies the estimate limy_, max;j—12...n, lon(y) — &5 (y)| = 0.

Since the surface D is Lyapunov, and the function ¢(x) € W?(M), then
limy oo max;j=12. .~ |pn(Yy) — 5 (y)] = 0.

The Theorem is proved

N1/2
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The computational scheme for the external Dirichlet problem is substantiated in a similar
way. For internal and external Neumann problems the unique solvability of the spline-
collocation method with zero-order splines is proved.

The system of equations (4.10) is solved by the continuous method of solving operator
equations. Its implementation is described above when considering 2D and 3D problems.

Let us present the results of numerical simulation of the solution of the Helmholtz
equation in domains with a smooth boundary.

Let us present the results of solving the internal and external 3D Dirichlet task for the
Helmholtz equations with boundary condition f(x,vy,2) =5 on the sphere 22 + 2 + 22 = 1.
Also we will present the results of solving the internal and external 3D Neumann problems
for the Helmholtz equations with boundary condition Jf(z,y,2)/0v = 5 on the sphere
22 + 4% + 22 = 1. Here ¥ is unit normal vector to the sphere z? + y? + 22 = 1. The problem
was solved in a spherical coordinate system. The grid of nodes (R, 0, ¢1), k =0,1,...,n1,l =
0,1,...,n9, was introduced. Through the nodes (R, 0k, ),k =0,1,...,n1,1 =0,1,...,no,
parallels and meridians were drawn. As a result, the sphere is covered by N = nins regions

Ak, 1l =0,1,...,n. The centers of the regions Ay ;,k =0,1,...,n1,0l =0,1,...,n9, are
taken as collocation nodes.
The results of calculations for the Dirichlet problem are given in Table 4.1.
Table 4.1. Internal and External 3D Tasks for Dirichlet Problem
Tabauna 4.1. 3D BHyTpenHue u BHerrHue 3a1a4un upuxiie
Dirichlet problem Internal task External task
k N €1 135 €1 2
0.5 80 0.0165725 | 0.00796006 | 0.00155752 0.00962531
0.5 240 | 0.00806834 | 0.00366256 | 0.000599909 | 0.00360849
1 80 0.0186016 | 0.00824733 | 0.00191118 0.00343365
1 240 | 0.00946607 | 0.00376398 | 0.000733595 | 0.00116734
5 80 0.210381 0.0423799 0.0089195 0.0037427
5 240 | 0.0482807 | 0.0120712 | 0.00375413 0.00158744
10 80 0.720814 0.173546 0.0254282 0.00325667
10 240 | 0.473627 0.089815 0.0148006 0.000953392
50 80 - - 0.318658 0.00518162
50 240 - - 0.158777 0.00692083

The results of calculations for the Neumann problem are given in Table 4.2.

By 1 we denote the error obtained when solving the Dirichlet problem for the Helmholtz
equation by the method of hypersingular integral equations of the first kind, €5 denotes
the error obtained when reducing the Dirichlet and Neumann problems for the Helmholtz
equation to the Fredholm equation of the second kind. The modulus of the wave number is
denoted by k.

I. V. Boykov, V. A. Roudnev, A.I. Boykova, N.S. Stepanov. Continuous operator method application for . . .



260

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2021. Vol. 23, No. 3.

Table 4.2. Internal and External 3D Tasks for Neumann Problem
Tabaurna 4.2. 3D BHyTpenHue u BHemHue 3a1aun Heitmana

Neumann problem Internal task | External task
k N €9 €9
0.5 80 1.03246 0.000587054
0.5 240 0.395273 0.000223925
1 80 0.0875912 0.000558534
1 240 0.0310176 0.000188801
5 80 0.0155207 0.000359148
5 240 | 0.00659237 0.000160749
10 80 0.0185102 0.000674467
10 240 0.0092024 0.000289515
50 80 0.0276603 0.000625453
50 240 | 0.00851501 0.00163204

Let us present the results of solving the Helmholtz equation in domains with piecewise
smooth surfaces. Regularization was carried out by the Wiener method.

Internal and external Dirichlet problems on a plane was reduced to hypersingular integral
equations of the first kind and, using the method of double layer potentials, to the Fredholm

equation of the second kind. The calculation results are presented in the Table 4.3.

Table 4.3. The Internal Dirichlet Problem on the Square €2

Tabsua 4.3. Bayrpennss 3anaqda upuxie B kBagpare 2.

Dirichlet | Internal
problem task
d n €1 13} €1 Sp]
0.1 10 0.00213411 | 0.000224903 0.0128316 0.0126578
0.1 20 0.00184517 | 0.000105285 0.0122158 0.0120572
0.1 50 0.00391174 | 8.24397e-05 0.0108303 0.0106801
0.01 10 0.0110965 0.0110993 0.0107978 0.010798
0.01 20 0.0110512 0.011053 0.00891222 0.00891234
0.01 50 0.00391174 0.00391142 0.00449703 0.00449608
0.001 10 0.00612334 0.00612343 0.00751996 0.00751996
0.001 20 0.00633153 0.00633159 0.00554193 0.00554193
0.001 50 0.00139693 0.00139699 0.00281375 0.00281374
0.0001 10 0.0055992 0.0055992 0.00717709 0.00717709
0.0001 20 0.00585335 0.00585335 0.00585333 0.00585333
0.0001 50 1.48831e-05 | 1.48831e-05 | 0.000112018 | 0.000112018
Note: Here Q = [—1,1]?, d is the rounding radius at the corners of the square, n is the number of

segments into which each side of the square is divided, and €1, 2 are errors in the metric of space
C(92). Here e is error when the boundary condition is approached as the value is displaced from
the nearest boundary, 5 is the error when the boundary condition is approached as the average
value over 5 points of the border. Exact solution is u*(z,y) = (x + 1)coskz + 2sinkz), k = 1.

Ipumenanue: 3mecn Q = [—1, 1]27 d - pagnyc OKpyrJIeHus yIJIOB KBaJpaTa, N - KOJUIECTBO CETMeH-
TOB, HA KOTODBIE JIEJIUTCS KaXKasi CTOPOHA KBaJpaTa, a £1,E2 - MOIPEITHOCTH PENIeHUsT yPaBHEHUS
B MeTpuke npocrpancTsa C(€2). 37ech £1 - MOrPEIIHOCTD PEIIEHHs IPU ANIPOKCUMAIMH IPAHUIHO-
ro yCJIOBHsI B TOYKE HA IVIQJIKON IpaHuUIlle 3HAYEHUEM B OJIMKANIIENl TOYKe MCXOJHON IPAHUILBI, £2 -

U. B. Boiikos, B. A. Pyxues, A. . Boiikosa, H. C. Crennanos. IIpuMenenne HEIPEPHIBHOI'O OIIEPATOPHOIO . . .



2Kypnas CpenaeBoJizKcKOro maremarudeckoro obmiecrsa. 2021. T. 23, Ne 3. 261

MOT'PENTHOCTD TIPU aIlITPOKCUMAIIIN FPAHTYIHOTO yCIOBUS B TOYKE Ha TJIAKOH IPaHUIle CPEIHUM 3Ha-
YeHMeM 110 5 TOUKaM MCXOLHON rpanunbl. Tounoe pemenne: u*(z,y) = (z+1) coskz+2sinkz, k = 1.

The internal Neumann problem on the plane solved by the method of double layer
potentials. The calculating scheme was constructed for the Fredholm equation of the second
kind. The calculation results are presented in the Table 4.4.

Table 4.4. Method of hypersingular integral equations of the second kind for internal Neumann
problem

Tabauna 4.4. Pemenne BayTpenneit 3amaan Heiimana. MeTon rumepcHHTy TSI pHBIX
MHTErPAJILHBIX YPaBHEHN BTOPOTO PO

Neumann problem | Internal task
d n €1 €9
0.1 10 0.0203548 | 0.00835932
0.1 20 0.0340605 0.0305454
0.1 50 0.0418156 0.0406616
0.01 10 0.0760089 0.0759413
0.01 20 0.0423401 0.0422682
0.01 50 0.00932829 | 0.00927824
0.001 10 0.0894408 0.0894401
0.001 20 0.0548243 0.0548236
0.001 50 0.0258951 0.0258947
0.0001 10 0.0929163 0.0929163
0.0001 20 0.0579243 0.0579243
0.0001 50 0.0296693 0.0296692
Note: Here Q = [—1, 1]2, d is the rounding radius at the corners of the square, n is the number of

segments into which each side of the square is divided, and €1, &2 are errors in the metric of space
C(Q2). Here €1 is error when the boundary condition is approached as the value is displaced from
the nearest boundary , €2 is the error when the boundary condition is approached as the average
value over 5 points of the border. Exact solution is u*(z,y) = (z + 1)coskx + 2sinkz, k = 1.

Ipumenanue: 3nech Q = [—1, 1]2, d - paguyc oKpyrJieHHsI yIJI0B KBaJipaTa, Nl - KOJUIEeCTBO CErMeH-
TOB, Ha KOTOPBIE HNEJIUTCA KaKJas CTOPOHA KBaJpaTa, & €1,€2 - IOIPEIIHOCTHU PEIIEHUsI ypABHEHUS
B Merpuke npocrpancTsa C(§2). 31€ech €1 - HOTPEIIHOCTD PEIleHUs] IIPH ANIPOKCHMAIMN IPAHIYIHO-
rO yCJIOBHUS B TOYKE HA TVIQJIKON IpaHuUIle 3HAUECHUEM B OJIMKAUIIENl TOYKE MCXOMHON TDAHUIIBI, £2 -
MIOTPEITHOCTD IIPU alllIPOKCUMAIINN I'PAHNYHOI'O yCJIOBUsA B TOYKe Ha IVIa KO IpaHUIle CPeTHUM 3Ha-
YEeHHeM 110 5 TOYKaM MCXOAHON rpanuisl. Tounoe pemenue: u*(z,y) = (x+1) cos kx+2sinkz, k = 1.

Internal 3D Dirichlet problem was reduced to hypersingular integral equations of the
first kind. Also internal 3D Dirichlet problem was solved by the method of double layer
potentials. The calculating scheme was constructed for the Fredholm equation of the second
kind. Results of calculation are given in the Table 4.5.
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Table 4.5. 3D Internal Dirichlet Problem in Cube Q2
Tabauna 4.5. 3D BuyTpennsist 3amada Jupuxie B kybde ()

Dirichlet problem | Internal task
d n €1 E2
0.1 5 0.00110805 | 0.00529278
0.1 8 0.000426094 | 0.00204103
0.1 10 0.00251942 0.0034902
0.01 5 0.0029991 0.00581462
0.01 8 0.00301313 | 0.00608984
0.01 10 0.000544667 | 0.00152193
0.001 5 0.0036374 0.00586556
0.001 8 0.00117232 | 0.00238229
0.001 10 0.000680864 | 0.00153978
0.0001 5 0.00385141 | 0.00587077
0.0001 8 0.00124549 | 0.00238498
0.0001 10 0.000724935 | 0.00154162
Note: Here Q = [—1,1]3, d is the rounding radius at the corners of the cube, n is the number of

segments into which each side of the cube is divided, and e1,e2 are errors in the metric of space
C(92). Here €, is error when the boundary condition is approached as the value is displaced from the
nearest boundary , €2 is the error when the boundary condition is approached as the average value
over 5 points of the border. Exact solution is u*(z1,z2,z3) = (c0s0.7z1 + 2sin0.7x1)(cos 0.6x2 +
25in 0.6x2)(cos v/15z3 + 2sin v1523), k = 1.

Ipumenanue: 3aecy Q = [—1, 1]3, d - paguyc OKpyIJIeHns BEPIIUH Ky0a, N - KOJIMIECTBO CEIMEHTOB,
Ha KOTODbIE JIEJINTCS KaKJasi CTOPOHA Kyba, a €1,£2 - TOYHOCTH PEIIEHUs] yPABHEHUsI B METPUKE
npocrpanctia C(). 3/1€Ch €1 - MOrPENIHOCTD PEIIEHUs] TP AMTPOKCUMAIAN TPAHUYHOTO YCJIOBUS B
TOYKE Ha TJIAJKOW IPAHUIE 3HAYEHUEM B OJIMKAMIIEl TOYKEe MCXOMHONW TPAHUIIBI, £2 - MTOTPENTHOCTD
[IPU AMMIPOKCUMAIIMY MPAHUYHOIO yCJIOBUS B TOYKE HA TJIAJIKONW IPAHUIE CPEJIHUM 3HAYEHHEM 110 H
TOYKAM UCXOAHOW rpanunsl. Tounoe pemenue: u* (21, x2,x3) = (cos0.7x1 + 2sin 0.721)(cos 0.6z2 +
2sin 0.6x2)(cos V15z3 + 2sin \/ﬁl‘g), k=1.

Internal 3D Neumann problem solved by the method of double layer potentials. The
calculating scheme was constructed for the Fredholm equation of the second kind. The
calculation results are presented in the Table 4.6

Table 4.6. Method of Double Layer Potentials for Internal Neumann Problem in the Cube 2

Tabuauna 4.6. MeTos TOTEHITUAIOB JBOWHOrO CJI0sI JIJIsI BHYTPEHHEH 3a/1a9u
Heiimana B kybe (2

Neumann problem | Internal task
d n €
0.01 5 0.194361
0.01 10 0.158837
0.001 5 0.187427
0.001 10 0.123524
0.0001 5 0.184671
0.0001 10 0.115699
0.00001 5 0.184395
0.00001 10 0.119485
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Note: Here Q = [~1,1], d is the rounding radius at the corners of the cube, n is the number
of segments into which each side of the cube is divided, and € is error in the metric of space
C(Q). Exact solution is u* (x1, z2,z3) = (cos 0.7x1 +2sin 0.7x1)(cos 0.6z2 + 2 5in 0.622) (cos v 15x3 +
2sin \/ﬁibg), k=1.

Ipumevanue: 3xecs Q = [—1,1)%, d - paguyc okpyryieHus Bepmu Ky6a, N - KOJIAYECTBO CEIMEHTOB,
Ha KOTOPBIE JICIUTCS KaxKJ1asi CTOPOHA Kyba, a €1, €2 - omMOKM B MeTpuke npocrpanctsa C(Q). 3necn
€1 - MOIPENIHOCTD PEIIeHUsI IPY AIIPOKCUMAIUMH IPAHIMYHOIO YCJIOBHUSI B TOYKE Ha [IAJIKON IDaHU-
I[e 3HAYEHHEM B OJirzKaifineil TOYKe MCXOJHON TDAHUIBI, £2 - IIOTPEIIHOCTH IIPH AIIIPOKCHMAIAN
IPAHIYHOrO yCJIOBHs B TOYKE Ha IVIAJIKON I'DAHUIE CPEIHUM 3HAYEHUEM I10 5 TOYKaM HCXOJIHON Ipa-

uunpl. Toanoe pemenne: u* (1, T2, 23) = (cos0.721+2sin 0.721)(cos 0.622+2 sin 0.622) (cos v/ 15x3+
2sinv/15x3),k = 1.

The above theorems on the application of the Fredholm integral equations of the first
and second kind to the solution of the Helmholtz equation with the Dirichlet and Neumann
boundary conditions are valid when the equations are defined in domains with smooth
surfaces or, after Wiener regularization, to equations defined in domains with piecewise
smooth surfaces.

Therefore, it is of interest to study the applicability of the operator method in the case
of piecewise smooth surfaces without any regularization.

It is the most instructive to compare the Dirichlet and the Neumann problems with
respect to solving them with the continuous operator method. For this purpose we discuss
the example of a plane wave scattering off a regular triangle.

The Dirichlet problem features a weakly singular integral kernel (logarithmic divergence),
which warrants resolvability of the problem. The continuous operator method, though,
converges slowly and only for a limited range of sufficiently small wave numbers.
Minimization of the logarithmic norm by normalizing the phase appropriately (4.5) makes
it possible to extend the range of convergence, but only marginally. For example, for kK = 1.7
minimization of the logarithmic norm makes the continuous operator method converge.
Indeed, with £ =1 A; = 0.929, A3 = 0.929 and A; = 0.195, and no convergence is observed.
Choosing (; appropriately we get Ay = 0.927, A3 = 0.927 and Ay, = —0.004, the latter
ensures the convergence. For higher wave numbers the method does not converge for the
Dirichlet problem even with this log-norm minimization trick.

In contrast, the Neumann problem integral kernel is strongly singular (quadratic
singularity), which requires a special treatment of the singular kernel (see [2]). With this
stronger singularity of the kernel for the Neumann problem all the logarithmic norms of
the operator remain negative for any value of the wave number. The appropriate choice of
the phase factor (4.5) becomes even more critical in this case, as it is the diagonal element
which determines the logarithmic norm, and neglecting the phase normalization could just
ruin the convergence. It is worth noticing, that for denser grids the continuous operator
method requires even a smaller number of arithmetic operations than solving the equations
directly by gaussian elimination. This is illustrated in Table 4.7, where we show the number
of matrix multiplication calls required to achieve a given accuracy for a plane wave scattered
off a regular triangle. For the both types of boundary condition we employ the 2-nd order
Euler method and the 4-th order Runge-Kutta method with identical — though non-optimal
— time steps h = 0.125. We see clearly that a very rapid convergence is observed in the case
of strongly singular Neumann problem.
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Table 4.7. Convergence table for £k = 1.7 for a weakly (Dirichlet problem) and a strongly singular
(Neumann problem) integral kernels.

Tabnuna 4.7. Tabuuna cxogumoctu npu k = 1.7 cabo (rpaHundHoe yciaoBue
Jlupuxse) u CUIBHO CHHTYJIAPHBIX (rpanngnHoe ycnosue Heiimana) MHTErpasbHBIX

Anep.
Residue Matrix multiplication calls
Euler(RK4)
norm Dirichlet problem | Neumann problem
101 3126(4028) 4(44)
102 4679(6468) 6(56)
1074 9178(36716) 9(76)
10-6 N/A 12(N/A)

Note: The problem corresponds to a plane wave scattering off a regular triangle. The matrix rank
is n = 150, the time step for solving the differential equation (4.4) is fixed to h = 0.125.
Ipumevarue: 3amada paccessHUs IJIOCKOM BOJIHBI Ha IIPABUJILHOM TPEYrOJIbHUKE. PaHr MaTpuiisr
n = 150, mar no Bpemenn pemenns guddepennmanbaoro ypasuenns (4.4) pasen h = 0.125.

The solutions of the Helmholtz equation are shown in Figs. 4.1 and Figs. 4.2. For the

both cases the wave vector is chosen as k = (—1.7,0)7, and the triangle is slightly tilted
with respect to the incoming wave direction.

k=(—1.7,0)7, solution amplitude k=(—1.7,0)7, solution phase

-50 =25 0.0 2.5 5.0 -50 =25 0.0 2.5 5.0
X1 X1
a) b)
Fig 4.1. The amplitude (a) and the phase (b) of the solution in the vicinity of a scatterer,
Dirichlet boundary conditions. The arrow is the wave vector

Puc. 4.1. Avnnmryaa (a) u dasa (b) perieHns B OKpeCTHOCTH I'DaHULBL
(rparmanoe ycmosue Jupuxie). Crpenkoit 0603HAYEH BOJTHOBOM BEKTOD
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k=(—1.7,0)7, solution amplitude
N

k=(—1.7,0)7, solution phase

4 4
2 2
g o0 g0
-2 -2
4 l 4
=50 =25 0.0 2.5 5.0 -5.0 72I.5 0.0 2.5 5.0
X1 X1
a) b)

Fig 4.2. The amplitude (a) and the phase (b) of the solution in the vicinity of a scatterer,
Neumann boundary conditions. The arrow is the wave vector

Puc. 4.2. Ammnryna (a) u dasa (b) pelneHus: B OKPECTHOCTU IPAHULBI
(rpannunoe ycioeue Heiimana). Crpesnkoit 0603HAUEH BOJIHOBOH BEKTOD

5. Inverse tasks

Consider the Helmholtz equation
Au + k*u =0, (5.1)

where k = || k|| > 0 is the wave number corresponding to the wave vector k.

The equation (5.1) is defined in the domain D with the boundary 9D € C5. The solution
of the equation (5.1) is a superposition of an incident plane wave and a scattering wave
u = ug(x, k) + @, where ug(z, k) is a plane wave; & — scattering wave.

Modeling the interaction of an incident wave with a scattering surface leads to equations
of the form (5.1) with the Dirichlet and Neumann boundary conditions.

Let’s construct a computational scheme for determining the wave number. For
definiteness, we restrict ourselves to considering the internal problem in the three-
dimensional case.

Let the values of u(x) and Ou/0v are known on the boundary 0D, where v is the unit
outward normal vector. To construct a computational scheme, we will use the formula [3]

ik|lz—y| ik|lz—y| _
1 [ 0 e ou, e ] s(y)—{ u(z), =x€D,

ar Jop uy)au(y) |z — 5| A |z — 9| 0, x¢€ R3\D.

Let at some point * € D the solution u(x) of the equation (5.1) is known under known
boundary conditions.
Then

1 0 6ik|a:*fy| ou 6ik|z*fy|
) s ot )
ov(y) |lz* —yl v |a* —yl

= —u(z*), z*eD.

J astn -

47 oD
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To find the wave number k, we use a continuous method for solving nonlinear operator
equations

dk(t)

=
1 9 eik(t)\m*fytf ou ekBlz" =yl . (5.2)

where 8 = 41 and is chosen so that the logarithmic norm of the derivative of the operator

9 etkWlz"—yl gy etk -yl
H(k) = /8D [u<y)8y(y) iz — g - &/(y)M} e(y)ds(y)

was negative.
To build a computational circuit, the integral

o eRWlz"=yl gy eik‘(t)x*—y:|
u ~ ) S | ey)ds
[ 05 T~ 30 gy | pests

is approximated by a cubature formula.
The differential equation (5.2) is solved by Euler’s method. As a result, we arrive at the
following iterative process

o  ethmlz =yl 9y etkmlzT—yl

b =+ 00 (g [ ) s o = G T st + (e
(5.3)

where h is the step of the Euler method.
But if 0D is piecewise smooth, then instead of the classical solution we will consider the
generalized by Wiener solution of the equation (5.1).

_ 0
Let F(x) and G(z) be continuous functions in D that coincide with u and 2 on oD,
v
respectively. Let us denote by u;(z) the solution of the equation (5.1) in D; satisfying the

Ou;
condition w;|,, = F and —— =G.

ov
oD;
Suppose the equation (5.1) is solvable in the domains D;. Using the Wiener generalized
solution to the equation (5.1) in the domain D we mean the function u(z) = lim u;(z),
1—> 00

x € D, if such a limit exists and does not depend on the choice of the sequence of domains
D; and on the way of constructing the functions F' or G.

Thus, the computational scheme (5.3) for a piecewise-smooth region will have the
following form

s = ﬁh<1/ {F )t G<>eikm$*yl]d<> ( >)
m+1 = km + — ——— — —— | ds(y) +u;(z*) ) .
o 17 Jop, |V ovly) o~y P R

Let us give a model example illustrating the effectiveness of the method.

Let be D = [-1,1]3. Exact solution of the Helmholtz equation (5.1) in D is equal
u(z,y,2) = (cos0.7z; + 2sin0.721)(cos 0.6z2 + 2sin 0.622)(cos V15 + 2sin/15), k? = I?+
+m2+7r2,1=0.7,m=0.6,r = V15.

Instead of the initial boundary of the region 0D, we will consider the following sequence

of surfaces 0D; = {U?:1 L;;u U;; Sij U Uj-:l R;; }, where L;; are planes with indents from
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the edges at a distance d;, S;; are cylindrical surfaces indented from the ribs by a distance
d; with radius d; and a height equal to 2 — d;, R;; is spherical surfaces indented from the
vertices by a distance d; for each variable and with radius d;.

The calculation results for the inverse problem of wave detection are shown in the
Table 5.1. Here k* is the exact value of the wavenumber, d; is the rounding radius of the
vertices and edges of the cube, M is the number of iterations of the Euler method, ¢ is the
determination error, 1 is the residual.

Table 5.1. Reconstruction of the wavenumber
Tabauna 5.1. BoccranoBjieHne BOJITHOBOIO YHCIIa

k* dl M e €1

0.5 0.001 200 5.27961e-05 1.55197e-07
0.5 0.0001 200 5.35118e-06 1.55116e-07
0.5 0.00001 200 6.343e-07 1.55108e-07
1 0.001 200 6.0594e-05 1.64743e-14
1 0.0001 200 6.05479e-06 1.68754e-14
1 0.00001 200 6.05292e-07 1.73196e-14
5 0.001 200 6.00708e-05 0.000559045
5 0.0001 200 5.19241e-05 0.000559247
5 0.00001 200 5.22667e-05 0.000559268

6. Discussion

The paper demonstrates the application of a continuous method for solving nonlinear
operator equations to direct and inverse problems of solving the Helmholtz equation. In the
case of linear equations, the method is of theoretical interest, since allows one to justify
approximate methods for solving operator equations without invertibility of the initial
operator. In the case of nonlinear equations, the method is realizable when the Frechet
(Gateau) derivative is uninvertible in the neighborhood of the initial value.

Analysis of the solution of model examples allows us to make the following conclusions:

1) The accuracy of solving the 3D internal and external Dirichlet problems is of the same
order, both when using hypersingular integral equations of the first kind, and when applying
weakly singular integral equations of the second kind;

2) The computational scheme for solving hypersingular integral equations constructed in
the article diverges when solving the 3D Neumann problem. This is due to the fact that the
piecewise constant approximation of the desired solution is insufficient in 3D hypersingular
integral equations;

3) When solving 2D of the Dirichlet problem in a domain with a piecewise smooth
boundary, the superiority of the method of hypersingular integral equations of the first kind
is obvious;

4) When solving the 3D Neumann problem in a domain with a piecewise smooth surface,
the method of hypersingular integral equations diverges.

It is obvious that there is a need to develop numerical methods for solving 3D
hypersingular integral equations by spline-collocation methods with splines of the first and
higher orders.

In the fifth section, the continuous operator method is applied to solving the problem of
reconstructing the wave number for the Helmholtz equation. The efficiency of the proposed
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computational scheme is demonstrated.

It is of considerable interest to extend the results obtained above to other formulations
of inverse scattering problems.
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Opueuua,/wuaﬂ cmamva

VIIK 519.63

ITpumeneHne HeNPepPbHIBHOTO METOA PEeHIeHUS

HEJIMHEIHBIX OINepPATOPHbIX YPaBHEHU K IIPSIMbBIM U

06paTHbIM 3aJlavdaM paccedHnmnd

n.B. BoﬁKOBl, B. A. Py,z:[HeBz, A.N. BoﬁKOBal, H. C. Crenanos!

T Mensencrud 2ocydapemeennvidll yrusepcumem (2. Iensza, Poccutickas Pedeparun)
2 Canxm-Ilemepbypeacruti 2ocydapcmeennovli yrusepcumem (2. Canrkm-ITemepbype,
Poccutickan Pedeparus)

Annoranus. Jlano o6061eHre HEIPEPHIBHOTO METO/IA PEIIEHUST HEJIMHEHHBIX OIIEPATOPHBIX ypaBHe-
HUIl B 6aHAXOBBIX IPOCTPAHCTBAX U OIIMCAHO €0 IPUMEHEHNUE JJIsl UCCIIEIOBAHUS IPSIMBIX U OOPATHBIX
3a7ad Teopuu paccesiHus. HenmpepbIBHBIN METO peleHnsI HeJIMHEHHBIX OIIePATOPHBIX YPaBHEHHUI OC-
HOBaH Ha JIAIyHOBCKOI TeOpUH yCTONYUBOCTU PEIIEHNM CUCTEM OOBIKHOBEHHBIX TuddDepeHITnaIbHbIX
ypaBHeHuii. OH IPUMEHUM K OIEPATOPHBIM YPABHEHUSIM B OAHAXOBBIX IIPOCTPAHCTBAX, B TOM YHUCJIE,
1 B ciydasx, Korga npoussosnnas ®@pemte (FaTo) menuneitnoro oneparopa HeobpaTuMa B OKPECTHO-
CTH HaIaJIbHOrO 3HadeHus. B pabore on mpuMmensiercs K pemrenuio 3amad Jupuxmie u Helimanna s
ypaBHeHus1 I'elbMrosiplia u JUIst OIpeJiesIeHUs BOJIHOBOI'O 4HCja B oOpaTHOU 3ajade. PaccMoTpeHbl
BHyTpeHHUe u BHelnHue 3a1a4u Jupuxie n Hefimanna st ypaBHeHus: ['esibMrosibia, ornpeaeaeHHoro
B 06JIaCTSAX C IVIQIAKUME U KYyCOYHO- IVIQIKUMM MpaHunaMu. B ciaydae, korna ypasHeHue [eabMross-
a paccMaTpUBAETCs B OOJIACTH C IVIAQJIKON I'DAHMIIEl, CyIIeCTBOBAHUE U €JUHCTBEHHOCTH DEIeHUs
cJlefyeT U3 KJIaCCUIECKOil Teopun norennuaia. [1pu pemennn ypasuenus ['espMrosbiia B 061aCTIX C
KYCOYHO IVIQIKUMH MPAHUIIAMU IPOBOIUTCS BUHEPOBCKas peryispusanus. 3agaquu Jupuxie u Heii-
MaHHA [JIs1 ypaBHeHUs ['eIbMrosblia MeTOZaMy T€OPUH IIOTEHIHAJIA TPAHC(POPMUPYIOTCS B CHHIY-
JISIPHBbIE HHTETrPaJIbHble YPABHEHUS BTOPOI'O POJia U B TMIIEPCHHIYJISIDHbIE NHTErDAJIbHbIE YPaBHEHU
1epBoro poza. Jljisi npubJINKEHHOrO DPEeIIleHUs] CUHIYJISPHBIX M I'MIEPCUHTYJISPHBIX UHTErDAJIBHBIX
YPpaBHEHUsI TIOCTPOEHBI M OOOCHOBAHBI BBIYHUCIUTEILHBIE CXEMBI METOIOB KOJIJIOKAIIMY U MEXaHHIe-
ckux KBaaparyp. OcoGeHHOCTH HENPEPBIBHOIO METO/A UJIIOCTPUPYIOTCH PEIIEHUEM KPAaeBbIX 3a/1a9
nyst ypaBHeHusi 'esbMrosbma. PaccMOTpeHBI MpHUO/IMKEHHBIE METOBI BOCCTAHOBJICHHUSI BOJIHOBOT'O
4qucia B ypaBHeHuu [esibMrosbria.

KuroueBblie ciioBa: ypaBHeHnue [eqbMroibiia, rpaandnbie yeiiosust Jupuxie u Helimana, obparHbie
3a/la4¥, HEIPEPBIBHBIN METOJI PEIIeHNsI OIIEPATOPHBIX yPaBHEHMIT
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