УДК 533.9.01

Исследование распространения поверхностных волн в цилиндрическом столбе магнитной жидкости, окружающей пористое ядро

© Э. Н. Егерева¹, О. А. Рунова², А. А. Кормилицин³

Аннотация. Построена и исследована математическая модель распространения и неустойчивости волн на поверхности цилиндрического столба магнитной жидкости бесконечной длины, окружающей коаксиально расположенное, бесконечное ядро (из пористого материала) круглого сечения. Найдены условия, при которых возмущения поверхности жидкого столба становятся неустойчивыми и приводят к его распаду на цепочку из соединенных капель. Ключевые слова: поверхностные волны, неустойчивость, магнитная жидкость, распад столба жидкости, магнитное поле, пористая среда

1. Введение

Магнитные жидкости получают искусственно: путем коллоидного диспергирования наночастиц твердого ферромагнетика в обычной немагнитной жидкости [1].

Такого вида жидкости широко используются в различных областях техники и технологии. Первоначально задача о поверхностных волнах струи магнитной жидкости рассмотрена в работе [2]. Затем распространение поверхностных волн в слое немагнитной жидкости на пористом основании исследовано в работе [3]. Исследования распространения волн на заряженной поверхности цилиндрического столба электропроводной жидкости, окружающей длинное пористое ядро, проведены в работе [4].

2. Постановка задачи

Рассматривается задача о распространении поверхностных волн в цилиндрическом столбе магнитной жидкости, окружающей длинное пористое ядро. Предполагается, что внутри объема магнитной жидкости находится пористое ядро, пропитанное этой же жидкостью, в форме коаксиально расположенного круглого цилиндра (рисунок 2.1).

¹ Доцент кафедры математики и теоретической механики, Мордовский государственный университет имени Н. П. Огарева, г. Саранск; egerevaen@mail.ru

² Аспирант кафедры математики, МордГПИ имени М. Е. Евсевьева, г. Саранск; runova.olga@list.ru ³ Студент 5-ого курса физико-математического факультета, МордГПИ имени М. Е. Евсевьева, г. Саранск

Рисунок 2.1

Учитываются силы поверхностного натяжения жидкости. Силы тяжести предполагаются отсутствующими. Ось симметрии пористого цилиндра совпадает с осью симметрии коаксиально расположенного соленоида, создающего однородное магнитное поле с напряженностью $\overline{H_0}$. Задача решается в цилиндрической системе координат (r, θ, z) , в которой жидкий столб покоится. Ось z направлена по оси симметрии пористого цилиндра. Радиусы пористого цилиндра, невозмущенной поверхности жидкости и соленоида обозначены через а, а₀ и b соответственно. Величины, относящиеся к пористой среде, свободной жидкости, находящейся вне пористой среды, и промежутку между жидкостью и соленоидом, будем обозначать во всех случаях индексами 1, 2 и 3 соответственно. Магнитная проницаемость μ_1 , μ_2 , μ_3 в областях 1, 2, 3 предполагается постоянной. Предполагаем, что $\mu_3 = 1$, а магнитная проницаемость среды в области 1 вычисляется по формуле $\mu_1 = \mu_2 \Gamma + \mu_s (1 - \Gamma)$, где μ_s - проницаемость пористой матрицы, Γ - пористость, которая представляет собой отношение объема пор к объему среды. Магнитная сила равна нулю при постоянной проницаемости, однако это не означает, что магнитное поле не влияет на движение жидкости. В самом деле, на поверхностях раздела сред существуют механические напряжения, посредством которых и происходит взаимодействие поля со средой.

3. Уравнения движения

Уравнения движения магнитной жидкости в пористой среде при сделанных предположениях имеют вид [3], [5]

$$\frac{\rho}{\Gamma}\frac{\partial \vec{u_1}}{\partial t} = -\text{grad } p_1 - \frac{\eta}{K}\vec{u_1}, \qquad \text{div } \vec{u_1} = 0.$$
(3.1)

Здесь ρ - плотность жидкости, η - вязкость, K - коэффициент проницаемости пористой среды, p_1 - давление, $\vec{u_1}$ - макроскопическая скорость фильтрации, связанная со средней скоростью жидкости в порах соотношением $\vec{u_1} = \Gamma \vec{v_1}$.

В линейном приближении уравнения движения свободной жидкости, в предположении, что амплитуда волны значительно меньше ее длины, имеют вид [6]

$$\rho \frac{\partial \vec{u_2}}{\partial t} = -\text{grad } p_2, \qquad \text{div } \vec{u_2} = 0, \tag{3.2}$$

Журнал СВМО. 2013. Т. 15, № 4

где $\vec{u_2}$ - скорость свободной жидкости.

Ограничиваемся случаем волн достаточно большой длины λ , существенно превышающей радиус a_0 жидкого столба магнитной жидкости, с тем, чтобы пренебречь слагаемыми, содержащими $\Delta \vec{u_1}$ и $\Delta \vec{u_2}$ в уравнениях (3.1) и (3.2).

Уравнения для магнитного поля имеют вид [7]

rot
$$\overrightarrow{H}_i = 0$$
, div $\mu_i \overrightarrow{H}_i$ $(i = 1, 2, 3)$. (3.3)

Из уравнений (3.1)-(3.3)следует

$$\vec{u_1} = \nabla\varphi_1, \ \vec{u_2} = \nabla\varphi_2, \ \vec{H_i} = \nabla\psi_i, \ \Delta\varphi_1 = 0, \ \Delta\varphi_2 = 0, \ \Delta\psi_i = 0 \ (i = 1, 2, 3).$$
(3.4)

Далее все величины будем записывать в виде

$$p_1 = p_{10} + p_{1w}, \quad p_2 = p_{20} + p_{2w}, \quad \vec{H}_i = \vec{H}_{i0} + \vec{H}_{iw}, \quad (3.5)$$

$$\psi_i = \psi_{i0} + \psi_{iw} = zH_{i0} + \psi_{iw} \quad (i = 1, 2, 3).$$

Нижним индексом 0 обозначены соответственно невозмущенные величины $\vec{H_{10}} = \vec{H_{20}} = \vec{H_{30}} \equiv \vec{H_0}$. Нижним индексом w обозначены малые возмущения, связанные с волной. Возмущения ψ_{iw} также должны удовлетворять уравнениям Лапласа (3.4).

4. Граничные условия

Граничные условия на поверхностях раздела имеют вид: на границе пористой среды r = a:

1)
$$u_{1r} = u_{2r}$$
, 2) $\psi_1 = \psi_2$, 3) $\mu_1 \vec{n} \nabla \psi_1 = \mu_2 \vec{n} \nabla \psi_2$, (4.1)
4) $p_1 - \frac{\mu_1}{4\pi} H_{1n}^2 + \frac{\mu_1}{8\pi} \vec{H_1}^2 = p_2 - \frac{\mu_1}{4\pi} H_{2n}^2 + \frac{\mu_1}{8\pi} \vec{H_2}^2$,

на свободной поверхности жидкости $r = a_0 + \xi(\theta, z, t)$:

5)
$$u_{2r} = \frac{d\xi}{dt}$$
, 6) $\psi_2 = \psi_3$, 7) $\mu_2 \vec{n} \nabla \psi_2 = \mu_3 \vec{n} \nabla \psi_3$,
8) $p_2 - \frac{\mu_2}{4\pi} H_{2n}^2 + \frac{\mu_2}{8\pi} \vec{H_2}^2 - (p_3 - \frac{\mu_3}{4\pi} H_{3n}^2 + \frac{\mu_3}{8\pi} \vec{H_3}) = 2\alpha C$,

где α - коэффициент поверхностного натяжения, C - средняя кривизна поверхности, \vec{n} - единичная нормаль к соответствующей поверхности.

на поверхности соленоида (r = b):

9)
$$\psi_{3w} = 0$$
,

то есть возмущение потенциала равно нулю.

Невозмущенные величины также должны удовлетворять граничным условиям (4.1). Для возмущений давления из (3.1) и (3.2) с учетом (3.5) следует

$$p_{1w} = -\frac{\rho}{\Gamma} \frac{\partial \varphi_1}{\partial t} - \frac{\eta}{K} \varphi_1, \qquad p_{2w} = -\rho \frac{\partial \varphi_2}{\partial t}. \tag{4.2}$$

Журнал СВМО. 2013. Т. 15, № 4

Из дифференциальной геометрии известно, что выражения для \vec{n} и *C* для деформированной цилиндрической поверхности в линейном приближении имеют вид:

$$\vec{n} = (n_r, n_\theta, n_z) = (1, -\frac{1}{a_0} \frac{\partial \xi}{\partial \theta}, -\frac{\partial \xi}{\partial z}),$$

$$2C = \text{div } \vec{n} = \frac{1}{a_0} - (\frac{\xi}{a_0^2} + \frac{1}{a_0^2} \frac{\partial^2 \xi}{\partial \theta^2} + \frac{\partial^2 \xi}{\partial z^2}).$$

$$(4.3)$$

На поверхности пористой среды $\vec{n} = (1, 0, 0)$

С учетом вышеизложенного, граничные условия (4.1) в линейном приближении принимают вид:

$$\begin{aligned} \frac{\partial \varphi_1}{\partial r} &= \frac{\partial \varphi_2}{\partial r} \quad (r=a), \end{aligned} \tag{4.4} \\ \psi_{1w} &= \psi_{2w} \quad (r=a), \\ \mu_1 \frac{\partial \psi_{1w}}{\partial r} &= \mu_2 \frac{\partial \psi_{2w}}{\partial r} \quad (r=a), \\ p_{1w} &+ \frac{\mu_1 H_0}{4\pi} \frac{\partial \psi_{1w}}{\partial z} = p_{2w} + \frac{\mu_2 H_0}{4\pi} \frac{\partial \psi_{2w}}{\partial z} \quad (r=a), \\ \frac{\partial \varphi_2}{\partial r} &= \frac{\partial \xi}{\partial t} \quad (r=a_0), \\ \psi_{2w} &= \psi_{3w} \quad (r=a_0), \\ \mu_2 (H_0 \frac{\partial \xi}{\partial z} - \frac{\partial \psi_{2w}}{\partial r} = \mu_3 (H_0 \frac{\partial \xi}{\partial z} - \frac{\partial \psi_{3w}}{\partial r}) \quad (r=a_0), \\ p_{2w} &+ \frac{\mu_2 H_0}{4\pi} \frac{\partial \psi_{2w}}{\partial z} - \frac{\mu_3 H_0}{4\pi} \frac{\partial \psi_{3w}}{\partial z} = -\alpha (\frac{\xi}{a_0^2} + \frac{1}{a_0^2} \frac{\partial^2 \xi}{\partial \theta^2} + \frac{\partial^2 \xi}{\partial z^2}) \quad (r=a_0), \\ \psi_{3w} (b) &= 0. \end{aligned}$$

Кроме того, на оси пористого цилиндра (r = 0) решения уравнений должны быть конечными.

В граничных условиях (4.4) вместо p_{1w}, p_{2w} надо подставить выражения (4.2).

Математическая модель является, таким образом, краевой задачей, состоящей из уравнений Лапласа (3.4) в цилиндрических координатах и граничных условий (4.4).

5. Решение задачи

Решение уравнения (3.4) с граничными условиями (4.4)ищем в виде

$$\begin{split} \varphi_1(r,\theta,z,t) &= \hat{\varphi}_1(r) \exp(-\gamma t + ikz + im\theta), \\ \varphi_2(r,\theta,z,t) &= \hat{\varphi}_2(r) \exp(-\gamma t + ikz + im\theta), \\ \psi_{1w}(r,\theta,z,t) &= \hat{\psi}_{1w}(r) \exp(-\gamma t + ikz + im\theta), \\ \psi_{2w}(r,\theta,z,t) &= \hat{\psi}_{2w}(r) \exp(-\gamma t + ikz + im\theta), \\ \psi_{3w}(r,\theta,z,t) &= \hat{\psi}_{3w}(r) \exp(-\gamma t + ikz + im\theta), \\ \xi(r,\theta,z,t) &= \hat{\xi}(r) \exp(-\gamma t + ikz + im\theta), \end{split}$$
(5.1)

где $\hat{\varphi}_i(r)$ $(i=1, 2), \ \hat{\psi}_j(r)$ $(j=1, 2, 3), \ \hat{\xi}$ - неизвестные величины, $k = 2\pi/\lambda$ -волновое число, $m = 0, 1, 2, ...; \ \gamma = \gamma_r + i\gamma_i, \ \omega = |\gamma_i|$ -частота, $\beta = \gamma_r$ -коэффициент, который может

Журнал СВМО. 2013. Т. 15, № 4

быть положительным при затухании возмущения, и отрицательным при неустойчивости, приводящей к нарастанию возмущения.

Подставляя выражения (5.1) для φ_i (i = 1, 2) и для ψ_{jw} (j = 1, 2, 3) в уравнения Лапласа, записанные в цилиндрических координатах, получим систему пяти модифицированных уравнений Бесселя порядка для амплитуд, решения которых имеют вид

$$\begin{aligned} \hat{\varphi}_1 &= C_1 I_m(kr) + C_2 K_m(kr), \\ \hat{\varphi}_2 &= C_3 I_m(kr) + C_4 K_m(kr), \\ \hat{\psi}_{1w} &= C_5 I_m(kr) + C_6 K_m(kr), \\ \hat{\psi}_{2w} &= C_7 I_m(kr) + C_8 K_m(kr), \\ \hat{\psi}_{3w} &= C_9 I_m(kr) + C_{10} K_m(kr). \end{aligned}$$

Здесь I_m и K_m - модифицированные функции Бесселя первого и второго рода порядка m. Следует положить $C_2 = 0$ и $C_6 = 0$, так как $K_m(kr) \to \infty$ при $r \to 0$. Граничные условия (4.4) с учетом пяти модифицированных уравнений Бесселя порядка m для амплитуд принимают следующий вид

$$\begin{aligned} 1) & C_{1}I'_{m}(ka) = C_{3}I'_{m}(ka) + C_{4}K'_{m}(ka), \end{aligned} \tag{5.2} \\ 2) & C_{5}I_{m}(ka) = C_{7}I_{m}(ka) + C_{8}K_{m}(ka), \end{aligned} \\ 3) & \mu_{1}C_{5}I_{m}(ka) = \mu_{2}C_{7}I'_{m}(ka) + \mu_{2}C_{8}K'_{m}(ka), \end{aligned} \\ 4) & -\frac{\rho\gamma}{\Gamma}C_{1}I_{m}(ka) + \frac{\eta}{K}C_{1}I_{m}(ka) - \frac{ik\mu_{1}H_{0}}{4\pi}C_{5}I_{m}(ka) = -\rho\gamma[C_{3}I_{m}(ka) + C_{4}K_{m}(ka)] - \\ & -\frac{ik\mu_{2}H_{0}}{4\pi}[C_{7}I_{m}(ka) + C_{8}K_{m}(ka)], \end{aligned} \\ 5) & kC_{3}I'_{m}(ka_{0}) + kC_{4}K'_{m}(ka_{0}) = -\gamma\hat{\xi}, \end{aligned} \\ 6) & C_{7}I_{m}(ka_{0}) + C_{8}K_{m}(ka_{0}) = C_{9}I_{m}(ka_{0}) + C_{10}K_{m}(ka_{0}), \end{aligned} \\ 7) & \mu_{2}[ikH_{0}\hat{\xi} - C_{7}kI'_{m}(ka_{0}) - C_{8}kK'_{m}(ka_{0})] = \\ & = \mu_{3}[ikH_{0}\hat{\xi} - C_{9}kI'_{m}(ka_{0}) - C_{10}kK'_{m}(ka_{0})] \end{aligned} \\ 8) & \rho\gamma^{2}[C_{3}I_{m}(ka_{0}) + C_{4}K_{m}(ka_{0})] + \frac{ik\mu_{2}\gamma H_{0}}{4\pi}[C_{7}I_{m}(ka_{0}) + C_{8}K_{m}(ka_{0})] - \\ & - \frac{ik\mu_{3}\gamma H_{0}}{4\pi}[C_{9}I_{m}(ka_{0}) + C_{10}K_{m}(ka_{0})] = -\frac{\alpha\gamma\hat{\xi}}{a_{0}^{2}}(1 - m^{2} - ka_{0}^{2}), \end{aligned}$$

Здесь *i* - мнимая единица, штрихами обозначены производные. Для упрощения вычислений далее предполагаем, что соленоид достаточно большого радиуса, то есть $a_0/b << 1$. Из системы граничных условий (5.2) выражаем восемь неизвестных коэффициентов $C_1, C_3, C_4, C_5, C_7, C_8, C_9, C_{10}$, через величину $\hat{\xi}$, которую считаем заданной. Подставляя найденные значения коэффициентов в восьмое уравнение системы (5.2), получаем дисперсионное уравнение для поверхностных волн в цилиндрическом столбе магнитной жидкости, окружающей длинное пористое ядро, кубическое относительно γ :

$$A_1\gamma^3 + A_2\gamma^2 + A_3\gamma + A_4 = 0, (5.3)$$

где A_1 , A_2 , A_3 , A_4 - некоторые коэффициенты, зависящие от свойств магнитной жидкости и пористой среды. Уравнение (5.3) может быть приведено к так называемому неполному кубическому уравнению [8] с дискриминантом $Q = (p/3)^3 + (q/2)^2$, где p и q выражаются через коэффициенты уравнения (5.3). При условии Q > 0 существует волновое движение, поскольку уравнение (5.3) имеет два комплексно сопряженных корня. При $Q \leq 0$ волновых движений нет, так как все три корня уравнения (5.3) действительные.

В частном случае, когда при $\Gamma \to 1$, $\eta/K \to 0$ (пористую среду заменяем магнитной жидкостью) первое уравнение (3.1) переходит в уравнение Эйлера, а из уравнения (5.3) при $a \to 0$ следует квадратное относительно γ дисперсионное уравнение, полученное в работе [2], результаты которой согласуются с экспериментом. При отсутствии магнитного поля, когда $H_0 = 0$ или $\mu_1 = \mu_2 = \mu_3 = 1$, получается классический результат Релея о распаде струи обычной жидкости.

6. Анализ модели

Численное исследование задачи о распространении поверхностных волн в цилиндрическом столбе магнитной жидкости, окружающей длинное пористое ядро проводилось для следующих значений параметров в системе СГС: $\rho = 1 \text{ г/см}^3$; $\alpha = 20 \text{ г/c}^2$; $\eta = 0,01 \text{ г/см}\cdot\text{c}$; $\Gamma = 0,8$; $K = 0,02 \text{ см}^2$; $0 < k < 1,8 \text{ см}^{-1}$; $H_0 = 20$ Э (эрстед, 1 Э = $(1/4 \pi) \cdot 10^3 \text{ A/m} \approx 79.6 \text{ A/m}$); $\mu_2 = 2$; $\mu_3 = 1$; $\mu_s = 1$; m = 0.

Для симметричных возмущений (m = 0) и фиксированных значений a, a_0 , $H_0 = 20$ Э интервал 0 < k < 1,8 см⁻¹ делится критической точкой k_c ($\lambda_c = 2\pi/k_c$), которая находится из условия Q = 0, на два интервала. В интервале $0 < k < k_c$ волны отсутствуют: происходит нарастание возмущений ($\beta < 0$). Амплитуда возмущения растет с наибольшей скоростью при $k = k_m$, при котором $|\beta|$ достигает максимума. Размер образующихся при распаде жидкого столба капель равен $\lambda_m \approx 2\pi/k_m$ [2]. При $k \to k_c$ движение жидкости замедляется, то есть $\omega \to 0$, $\beta \to 0$. В интервале $k_c < k < 1,8$ см⁻¹ существуют затухающие ($\beta > 0$)волны.

В таблице 3 приведены значения критического волнового числа k_c , максимального волнового числа k_m и соответствующего ему максимального значения безразмерного коэффициента затухания $\beta_m^* \equiv \beta_m^*(k_m)$ в зависимости от толщины пористого ядра a (0,2 < a < 0,9) при фиксированном значении $a_o = 1,1$ см и перечисленных выше значениях остальных параметров. Здесь безразмерный коэффициент затухания $\beta^*(k) = \beta(k) [\alpha/\rho a_0^3]^{-1/2}$.

таолица 5.									
a,cm	0,2	0,3	$0,\!4$	0,5	$0,\!6$	0,7	0,8	0,9	
k_c , cm ⁻¹	$0,\!621$	0,622	$0,\!623$	$0,\!624$	$0,\!625$	$0,\!626$	0,629	$0,\!633$	
k_m , cm ⁻¹	$0,\!422$	0,424	$0,\!428$	0,431	0,432	$0,\!433$	$0,\!437$	$0,\!440$	
β_m^*	-0,831	-0,817	-0,810	-0,802	-0,787	-0,780	-0,750	-0,728	

Таблица 3:

Из таблицы 3 видно, что критическое волновое число слабо зависит от толщины пористого цилиндра и остается равным $k_c\approx 0,6\,$ см $^{-1}$.

В таблице 4 приведены значения k_c , k_m , $\beta_m^* \equiv \beta_m^*(k_m)$ в зависимости от a_0 (0,7 < $a_0 < 1, 4$) при фиксированной толщине пористого ядра a = 0, 5 см.

Из таблицы 4 видно, что при увеличении толщины невозмущенной поверхности магнитной жидкости критическое и максимальное значения волнового числа уменьшаются

Таблица	$4 \cdot$
таолица	±.

а ₀ , см	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4
k_c , cm ⁻¹	1,132	0,953	0,817	0,710	0,624	0,553	0,494	0,444
k_m, cM^{-1}	0,787	$0,\!657$	0,563	$0,\!489$	0,424	0,372	0,332	0,305
β_m^*	-1,786	-1,429	-1,155	-0,952	-0,798	-0,679	-0,583	-0,5

при фиксированном a = 0,5 см. Максимальное значение безразмерного коэффициента затухания по модулю также уменьшается.

На рисунках 6.1, 6.2 приведены графики зависимостей безразмерных величин частоты $\omega^*(\Gamma) = \omega(\Gamma)[\alpha/\rho a_0^3]^{-1/2}$ и коэффициента затухания $\beta^*(\Gamma)$ от пористости для различных значений магнитной проницаемости жидкости: $\mu_2 = 1, 2; 1, 4; 1, 6; 1, 8; 2$ (1 - 5). На графике кривые показаны номерами 1 - 5 соответственно.

Рисунок 6.1

Зависимость безразмерной частоты ω^* от Γ : $\mu_2 = 1, 2; 1, 4; 1, 6; 1, 8; 2 (1 - 5); a = 0, 5$ см; $a_0 = 1, 5$ см; k = 0, 8 см⁻¹; m = 0; $H_0 = 20$ Э

Зависимость коэффициента затухания β^* от Γ : $\mu_2 = 1, 2; 1, 4; 1, 6; 1, 8; 2 (1 - 5); a = 0, 5$ см; $a_0 = 1, 5$ см; k = 0, 8 см⁻¹; $m = 0; H_0 = 20$ Э

На рисунках 6.3, 6.4 приведены графики зависимостей $\omega^*(\mu_2)$ и $\beta^*(\mu_2)$ при m = 0 и фиксированных значениях $H_0 = 20$ Э, a = 0,5 см, $a_0 = 1,1$ см для разных значений пористости.

Из графиков видно, что безразмерная частота ω^* слабо зависит от пористости ядра рассматриваемой модели. Безразмерный коэффициент затухания β^* при фиксированных значениях Γ увеличивается с увеличением магнитной проницаемости жидкости.

Зависимость безразмерной частоты ω^* от μ_2 : $\Gamma = 0, 5; 0, 6; 0, 7; 0, 8; 0, 9$ (1 - 5); a = 0, 5 см; $a_0 = 1, 5$ см; k = 0, 8 см⁻¹; m = 0; $H_0 = 20$ Э

Рисунок 6.4

Зависимость коэффициента затухания β^* от μ_2 : $\Gamma = 0, 5; 0, 6; 0, 7; 0, 8; 0, 9$ (1 - 5); a = 0, 5 см; $a_0 = 1, 5$ см; k = 0, 8 см⁻¹; m = 0; $H_0 = 20$ Э

7. Заключение

Исследовано распространение волн на поверхности цилиндрического столба магнитной жидкости, окружающей ядро из пористого материала в приложенном магнитном поле, направленном вдоль оси жидкого столба. Рассмотрена область длинных волн, которая при симметричных возмущениях, когда m = 0, и достаточно слабых полях $0 \le H_0 \le 40$ Э делится критической точкой k_c на два интервала. В интервале $0 < k < k_c$ происходит апериодическое движение ($\beta < 0$) с нарастающей амплитудой, приводящее к распаду жидкого столба на цепочку из соединенных между собой капель, длина которых равна $\lambda_m = 2\pi/k_m$. При $k \to k_c$ ($\lambda \to \lambda_c = 2\pi/k_c$) движение жидкости замедляется, то есть $\omega \to 0$, $\beta \to 0$, что связано с взаимной нейтрализацией капиллярных и магнитных сил, действующих на поверхности жидкости.

Зависимость безразмерного коэффициента затухания $\beta^*(\mu_2)$ при различных значениях пористости является монотонно возрастающей.

В интервале $k_c < k < 1,8$ см⁻¹ существует затухающее волновое движение с безразмерной частотой $\omega^*(\Gamma)$, монотонно возрастающей с ростом магнитной проницаемости жидкости.

Список литературы

1. Слезкин Н. А., "О влиянии пористости дна на плоскую стоячую волну тяжелой жидкости", Изв. АН СССР. МЖГ, 1984, № 4, 160–163.

- 2. Тактаров Н.Г., "Распад струи магнитной жидкости", *Магнитная гидродинамика*, 1975, № 2, 35–38.
- 3. Миронова С. М., Тактаров Н. Г., "Распространение волн на заряженной поверхности цилиндрического столба жидкости, окружающей длинное пористое ядро", Изв. РАН. МЖГ, 2012, № 4, 104–110.
- 4. Столяров И.В., Тактаров Н.Г., "Распространение волн в слое жидкости на пористом основании", Изв. АН СССР. МЖГ, 1987, № 5, 183–186.
- 5. Иванов А.Б., Тактаров Н.Г., "К исследованию фильтрации магнитных жидкостей", Магнитная гидродинамика, 1990, № 3, 138–139.
- 6. Седов Л.И., Механика сплошной среды. Т. 1, Наука, М., 1976, 536 с.
- 7. Тамм И.Е., Основы теории электричества, Наука, М., 1976, 616 с.
- 8. Курош А.Г., Курс высшей алгебры, Наука, М., 1975, 431 с.

Research of propagation of the waves on a surface of a cylindrical column of magnetic fluid surrounding a porous core.

 \bigcirc E. N. Egereva⁴, O. A. Runova⁵, A. A. Kormilicin⁶

Abstract. A mathematical model of wave propagation and instability on a surface of an infinite cylindrical configuration of magnetic fluid, surrounding a coaxial infinite cylindrical porous core, is constructed and studied. The conditions are found under which the disturbances of the liquid column become unstable and result in its fragmentation into a chain of connected droplets. **Key Words:** waves, magnetic fluid, cylindrical configuration of fluid, magnetic field, long porous core

⁴Associate professor of the Department of Mathematics and Theoretical mechanics, Mordovian State University after N.P. Ogarev, Saransk; egerevaen@mail.ru

⁵ Postgraduate student, Mordovian State Pedagogical Institute named after M.E. Evsevyev, Saransk; runova.olga@list.ru

⁶ Student, Mordovian State Pedagogical Institute named after M.E. Evsevyev, Saransk