УДК 517.956.2

Топология магнитных полей и динамические системы © М. Л. Коломиец¹, А. Н. Сахаров²

Аннотация. Изучается топология магнитных полей в плазме и возможности ее описания в терминах динамических систем.

Ключевые слова: особые точки поля, магнитные силовые линии, топологическая структура, сепараторы, гетероклинические кривые

1. Введение

В настоящей работе рассматривается связь между топологией силовых линий магнитного поля и теорией динамических систем. Эта связь рассматривается в рамках магнитной гидродинамики, то есть речь идет о динамике взаимодействия магнитного поля с проводящей движущейся средой, которую будем для краткости называть плазмой. Задача о топологии магнитных силовых линий в плазме играет существенную роль в описании динамики плазмы в короне солнца, термоядерных реакторах, а также в фундаментальной задаче о механизме перезамыкания [1].

Топология магнитных полей описывается на языке силовых линий. Действительно, магнитное поле задается вектором напряженности **H** в каждой точке некоторой области трехмерного пространства. Интегрирование этого векторного поля позволяет определить его интегральные кривые, которые принято называть силовыми линиями поля. Для построения полной картины топологии магнитного поля – фазового портрета, необходимо также учесть конфигурацию особенностей поля – точек, где оно не определено. Такими точками являются точки, в которых поле равно нулю, а также точки, в которых поле неограничено. Точки, в которых поле неограничено, в классической электродинамике соответствуют точечным электрическим или магнитным зарядам. Точечные заряды являются либо *источниками*, либо *стоками*, то есть силовые линии начинаются и заканчиваются в этих точках. Заметим, что магнитный заряд – монополь до сих пор экспериментально не обнаружен, поэтому источниками (стоками) магнитного поля являются *диполи*³. Отсутствие монополей приводит к тому, что магнитное поле бездивергентно:

$$\operatorname{div} \boldsymbol{H} = 0. \tag{1.1}$$

Совокупность всех источников поля образет мультиполь, интенсивность которого равна сумме интенсивностей входящих в него источников.

Представление о точечной природе источников электромагнитного поля приводит к логическим противоречиям теории: точечный заряд имеет бесконечную массу. Они разрешаются с помощью так называемых процедур перенормировки поля в окрестности особенности [2]. Перенормировка, как правило, – это переход от точечного объекта к объекту конечных размеров. В случае макроскопических полей допущение о точечном характере источников поля вполне оправдано.

¹ Доцент кафедры высшей математики, Нижегородская государственная сельскохозяйственная академия, Нижний Новгород; math@agri.sci-nnov.ru

² Доцент кафедры высшей математики, Нижегородская государственная сельскохозяйственная академия, Нижний Новгород; ansakharov2008@yandex.ru

³ Диполь – комбинация двух противоположных по знаку зарядов, равных по абсолютной величине. Моделью магнитного диполя является поле, создаваемое петлевым током.

В задачах магнитной гидродинамики магнитное поле принято представляеть индукцией магнитного поля B, которая связана с H соотношением $B = \mu H$, где μ – магнитная проницаемость среды. Тогда движение вдоль силовых линий описывается векторным дифференциальным уравнением

$$\frac{d\boldsymbol{r}}{ds} = \boldsymbol{B}(\boldsymbol{r}), \tag{1.2}$$

где $r = \{x, y, z\}$ – радиус-вектор точки, в которой приложен вектор B, а s – некоторый параметр (не обязательно длина дуги), который определяет положение точки на силовой линии, относительно начального положения. Нулевые точки определяются уравнением

$$\boldsymbol{B}(\boldsymbol{r}) = 0. \tag{1.3}$$

Нулевые точки – это неподвижные точки потока, порождаемого уравнением (1.2).

В типичном случае⁴ собственные значения $\lambda_1, \lambda_2, \lambda_3$ в нулевой точке поля **B** не равны нулю и удовлетворяют соотношению $\lambda_1 + \lambda_2 + \lambda_3 = 0$, в силу равенства (1.1). С точки зрения теории динамических систем такая нулевая точка является седлом с двумерной и одномерной сепаратрисами. Как показано в [11] нулевая точка будет седлом, если сумма интенсивностей всех источников поля в конечной части рассматриваемой области не равна нулю.

В физической литературе часто одномерную сепаратрису седла называют *шипом* (spine), а двумерную – *веерной поверхностью* (fan) [3]. Пересечения веерных поверхностей различных нулевых точек принято называть *сепараторами*. Если эти пересечения трансверсальны, то их называют *гетероклиническими сепараторами*. На языке динамических систем – это гетероклинические кривые.

гисунок **т.т** Гетероклинический сепаратор.

Таким образом, объединение особенностей поля, шипов, веерных поверхностей и сепараторов определяет топологическую структуру поля. Это объединение называют в физической литературе *скелетом* или *остовом* магнитного поля.

⁴ Легко показать, что у градиентного потока все собственные числа нулевых точек будут вещественными.

Экспериментальные наблюдения показывают, что эволюция структуры магнитного поля в плазме демонстрирует характер релаксационных колебаний: в течении значительного промежутка времени структура магнитного поля не изменяется, затем быстро происходит перестройка структуры (бифуркация), которая сопровождается перезамыканием магнитных силовых линий. Физические процессы, приводящие к перезамыканию силовых линий, подробно описаны в обзорной статье [1], математическая теория этих процессов дается в монографии [3], глава 8.

Задача о перестройке структуры магнитного поля сводится к изучению бифуркаций траекторий системы (1.2). При достаточно общих предположениях этой системе можно сопоставить динамическую систему на трехмерном многообразии с тем же самым остовом. Более того, в типичном случае это будет система Морса-Смейла, что позволяет выделить структурно устойчивые топологические конфигурации магнитных полей и получить их топологическую классификацию.

Заметим, что во многих учебниках физики присутствует утверждение о том, что силовые линии не имеют физического смысла⁵. Однако, в магнитной гидродинамике силовые линии имеют вполне определенный физический смысл. Например, в идеально проводящей плазме имеет место свойство *вмороженности магнитного поля*: при движении среды силовые линии следуют за ней, будучи как бы "вмороженными" [4]. Эти условия выполнены в токомаках – устройствах для изучения термоядерных реакций в земных условиях. Устойчивость замкнутого плазменного шнура в токомаке обеспечивается существованием замкнутых магнитных поверхностей (торов), состоящих из силовых линий [5].

В работе В.З. Гринеса и О.В. Починки [6] был изучен класс динамических систем, моделирующих при достаточно общих предположениях магнитные поля в короне Солнца. Ниже рассматривается частный случай таких систем, моделирующих явно заданные потенциальные поля.

2. Модели магнитных полей

Непосредственное изучение топологии магнитного поля в плазме подразумевает решение системы магнитогидродинамических уравнений ([8], гл. 8). Основное уравнение, связывающее скорость потока v в плазме и магнитное поле H описывается следующим уравнением в частных производных

$$\frac{\partial \boldsymbol{H}}{\partial t} = \operatorname{rot}(\boldsymbol{v} \times \boldsymbol{H}) + \eta \Delta \boldsymbol{H}, \qquad (2.1)$$

где η – магнитная вязкость, обратная магнитному числу Рейнольдса. Решение этого и сопутствующих уравнений при заданных начальных и краевых условиях представляет собой сложную вычислительную задачу. Например, численное моделирование процесса перезамыкания силовых линий полей в высокопроводящей плазме возможно только при использовании суперкомпьютеров [9]. Следовательно, в системе (1.2) необходимо использовать априорные модели поля. Построение таких моделей использует ряд предположений физического характера.

Основное предположение носит название «модель топологии магнитного заряда» (модель ТМЗ) (см., например, [10]) и заключается в следующих упрощающих анализ допущениях:

1. источник поля (диполь) представляется в виде пары точек, одна из которых является источником, другая – стоком;

⁵ Заметим, что этого мнения придерживался академик И.Е. Тамм [7], один из авторов идеи токомака!

2. поле потенциально, то есть представимо в виде $B = \nabla \Phi$, где Φ – скалярный потенциал.

Для n точечных источников с интенсивностями α_k , расположенных в точках \boldsymbol{r}_k , $k = 1, 2, \ldots, n$, потенциальное поле, удовлетворяющее условиям модели ТМЗ, задается потенциалом

$$\Phi(\boldsymbol{r}) = -\sum_{k=1}^{n} \alpha_k \frac{1}{\|\boldsymbol{r} - \boldsymbol{r}_k\|}.$$
(2.2)

Тогда

$$\boldsymbol{B}(\boldsymbol{r}) = \nabla \Phi(\boldsymbol{r}) = \sum_{k=1}^{n} \alpha_k \frac{\boldsymbol{r} - \boldsymbol{r}_k}{\|\boldsymbol{r} - \boldsymbol{r}_k\|^3}.$$
(2.3)

В этой модели равенство divB = 0 выполняется всюду, кроме источников (стоков) магнитного поля. Эта модель с разной степенью детализации рассматривалась в целом ряде работ [11], [12], [13], [14], [15], [16], [17], где она использовалась для описания механизма рождения и смерти сепараторов.

При моделировании магнитного поля солнечной короны, в модель TM3 добавляется еще одно предположение:

3. границу фотосферы можно рассматривать как инвариантную сферу S^2 , на которой и располагаются источники поля.

В локальных координатах это инвариантная плоскость z = 0. При заданном количестве источников, можно в типичном случае определить количество нулей поля, лежащих на инвариантной сфере. Используя формулу Эйлера для индекса векторного поля получаем

$$n_{\alpha} + n_{\omega} - n_{\sigma} = \chi = 2, \qquad (2.4)$$

где n_{α} – число источников поля, n_{ω} – число стоков, n_{σ} – число седловых нулевых точек, χ – эйлерова характеристика сферы [18].

В общем случае нули и источники поля располагаются в пространстве произвольным образом и их количество удовлетворяет соотношению

$$n_{\alpha} - n_{\sigma}^+ = n_{\omega} - n_{\sigma}^-, \qquad (2.5)$$

где n_{σ}^+ – число седел с двумерной неустойчивой сепаратрисой, n_{σ}^- – число седел с двумерной устойчивой сепаратрисой. Это соотношение следствие равенства нулю суммы индексов особых точек векторного поля на трехмерном замкнутом многообразии [18]. В равенствах (2.4) и (2.5) подразумевается баланс источников поля, то есть сумма интенсивностей всех источников равна нулю. В случае неравенства нулю этой суммы добавляется источник в бесконечности соответствующей интенсивности.

Формулы (2.4) и (2.5) связывают между собой количество критических точкек различных индексов функции Морса на замкнутом многообразии.

Следовательно, в этой модели подразумевается, что источники поля по своей природе не отличаются от притягивающих (отталкивающих) нулевых точек поля.

Рисунок 2.1

Источники и нулевые точки поля.

Действительно, пусть $a(\boldsymbol{r}) = \prod_{k=1}^{n} \|\boldsymbol{r} - \boldsymbol{r}_k\|^3$. Тогда уравнение (1.3) можно представить в виде

$$oldsymbol{B}(oldsymbol{r}) \,=\, rac{1}{a(oldsymbol{r})} \sum_{k=1}^n arepsilon_k (oldsymbol{r}-oldsymbol{r}_k) a(oldsymbol{r}) / \|oldsymbol{r}-oldsymbol{r}_k\|^3 \,=\, rac{1}{a(oldsymbol{r})} oldsymbol{F}(oldsymbol{r}).$$

Ясно, что уравнение F(r) = 0 определяет нули поля B(r) и имеет, кроме этого, простые нули в точках r_1, r_2, \ldots, r_n .

Пусть $\epsilon > 0$, для любого k = 1, 2, ..., n найдем шар $U_k(\varepsilon)$ радиуса $\rho(\varepsilon)$ с центром в точке \mathbf{r}_k такой, что $a(\mathbf{r}) < \varepsilon$ для всех $\mathbf{r} \in U_k(\varepsilon)$. Очевидно, что $\rho(\varepsilon) \to 0$ при $\varepsilon \to 0$. Рассмотрим векторное поле

$$\boldsymbol{G}(\boldsymbol{r},\varepsilon) = \begin{cases} \frac{1}{a(\boldsymbol{r})} \boldsymbol{F}(\boldsymbol{r}), & \boldsymbol{r} \in \mathbb{R}^3 \setminus \bigcup_{k=1}^n U_k(\varepsilon), \\ \frac{1}{a(\boldsymbol{r},\varepsilon)} \boldsymbol{F}(\boldsymbol{r}), & \boldsymbol{r} \in \bigcup_{k=1}^n U_k(\varepsilon), \end{cases}$$
(2.6)

где $a(\boldsymbol{r},\varepsilon) = a(\boldsymbol{r}) + \varepsilon b_k(\boldsymbol{r})$, а $b_k: \overline{U}_k(\varepsilon) \to [0,1] - C^{\infty}$ -функция такая, что

1.
$$b_k(\boldsymbol{r}) = 1$$
 при $\|\boldsymbol{r} - \boldsymbol{r}_k\| \le \frac{\rho(\varepsilon)}{2}$,

- 2. $0 < b_k(\mathbf{r}) < 1$ при $\frac{\rho(\varepsilon)}{2} < \|\mathbf{r} \mathbf{r}_k\| < \rho(\varepsilon)$,
- 3. $b_k(\mathbf{r}) = 0$ при $\|\mathbf{r} \mathbf{r}_k\| = \rho(\varepsilon)$.

Определенное таким образом поле $G(r, \varepsilon)$ имеет те же самые нули, что и поле B(r), бездивергентно в области $\mathbb{R}^3 \setminus \bigcup_{k=1}^n U_k(\varepsilon)$ и имеет в качестве источников-стоков простые нулевые точки r_1, r_2, \ldots, r_n . Будем называть векторное поле $G(r, \varepsilon)$ регуляризацией поля B(r).

Так как топология векторного поля определяется силовыми линиями, то естественно ввести следующее определение.

Определение 2.1. Два векторных поля на одном и том же многообразии M называются топологически эквивалентными, если существует гомеоморфизм h: $M \to M$ этого многообразия, который переводит интегральные кривые первого поля в интегральные кривые второго, сохраняя их ориентации.

Исходя из этого определения, получаем следующий результат.

Теорема 2.1. Векторные поля B(r) и $G(r, \varepsilon)$ топологически эквивалентны.

Д о к а з а т е л ь с т в о. Вне окрестностей $U_k(\rho)$ интегральные кривые обоих полей идентичны и искомый гомеоморфизм – тождественный. В окрестностях $U_k(\rho)$ отождествим траектории с одинаковыми начальными данными на границе окрестности. Так как все интегральные кривые уравнения (1.2) и уравнения

$$\frac{d\boldsymbol{r}}{ds} = \boldsymbol{G}(\boldsymbol{r},\varepsilon) \tag{2.7}$$

в каждой окрестности входят в одну и ту же точку, то это соответствие будет взаимно однозначным.

Далее, при $\mathbf{r} \in U_k(\varepsilon)$ уравнение (2.7) представляет собой сингулярно возмущенное уравнение

$$a(\boldsymbol{r},\varepsilon)\frac{d\boldsymbol{r}}{ds} = \boldsymbol{F}(\boldsymbol{r}).$$

Так как единственное положение равновесия этой системы будет асимптотически устойчиво (неустойчиво), то согласно классической теореме А.Н. Тихонова [19] построенное выше соответствие будет непрерывным при всех $\varepsilon \in [0, \varepsilon_0]$.

Доказательство закончено.

Рис. 2.1 иллюстрирует доказанную теорему. На нем изображены кривые $B_x(x, y, 0) = 0$, $B_y(x, y, 0) = 0$ для поля вида (2.3) с тремя источниками в точках $r_1 = (0, 0, 0)$, $r_2 = (1, 0, 0)$, $r_3 = (.5, .8, 0)$ на инвариантной плоскости z = 0. Кривые имеют пять точек пересечения в конечной части плоскости: три из них соответствуют источникам, две – нулевым точкам седлового типа.

Благодарности. Работа выполнена при частичной финансовой поддержке гранта РФ-ФИ № 15-01-03687-а.

Список литературы

- 1. Б.Б. Кадомцев, "Перезамыкание магнитных силовых линий", *Успехи физических на ук*, **151**:1 (1987), 3–29.
- 2. Ландау Л.Д., Лифшиц Е.М., Теория поля, Наука, М., 1967.
- 3. Прист Э., Форбс Т., Магнитное пересоединение: магнитогидродинамическая теория и приложения, Физматлит, М., 2005.
- 4. Альвен Г., Фельхаммар К.Г., Космическая электродинамика, Мир, М., 1967.
- 5. Ю. Мозер, Лекции о гамильтоновых системах, Мир, М., 1973.
- V. Grines, O. Pochinka, "Topological Classification of Global Magnetic Field in the Solar Corona", *Solar Physics*, (in the press) (2015).

- 7. И.Е. Тамм, Основы теории электричества, Физматлит, М., 2003.
- 8. Ландау Л.Д., Лифшиц Е.М., Электродинамика сплошных сред, Наука, М., 1982.
- 9. Д. П. Костомаров, Е. Ю. Ечкина, И. Н. Иновенков, С. В. Буланов, "Моделирование магнитного перезамыкания в трехмерной геометрии", *Матем. моделирование*, **21**:11 (2009), 3–15.
- D.W. Longcope, "Topological Methods for the Analysis of Solar Magnetic Fields", Living Rev. Solar Phys., 2:7 (2005), 5–72.
- 11. Молоденский М. М., Сыроватский С. И., "Магнитное поле в активных областях и его нулевые точки", *Астрономический Журнал*, **54** (1977), 1293–1304.
- D.S. Brown, E.R. Priest, "Topological bifurcations in three-dimensional magnetic fields", Proc. R. Soc. Lond. A, 455:1991 (1999), 3931–3951.
- D.S. Brown, E.R. Priest, "The topological behavior of stable magnetic separators", Solar Phys., 190:1-2 (1999), 25–33.
- 14. D.S. Brown, E.R. Priest, "Topological bifurcations and similarities between force-free and potential models of coronal magnetic fields", *Solar Phys.*, **194**:2 (2000), 197–204.
- C. Beveridge, E.R. Priest, D.S. Brown, "Magnetic topologies due to two bipolar regions", Solar Phys., 2:2 (2002), 333–347.
- C. Beveridge, E.R. Priest, D.S. Brown, "Magnetic topologies in the solar corona due to four discrete photospheric flux regions", *Geophysical & Astrophysical Fluid Dynamics*, 98:5 (2004), 429–446.
- R. Maclean, C. Beveridge, D. Longcope, D. Brown, E. Priest, "A topological analysis of the magnetic breakout model for an eruptive solar flare", *Proc. R. Soc. A*, 461:5 (2005), 2099–2120.
- 18. Дубровин Б.А., Новиков С.П., Фоменко А.Т., Современная геометрия, Наука, М., 1979.
- 19. Тихонов А.Н., "О зависимости решений дифференциальных уравнений от малого параметра", *Матем сб.*, **22**:2 (1948), 193–204.

Topology of magnetic fields and dynamical systems © M.L. Kolomiets⁶, A.N. Sakharov⁷

Abstract. We discuss the topology of magnetic fields in the plasma and the possibility of their description in terms of dynamic systems.

Key Words: singular points of the field, magnetic field lines, topological structure, sources, sinks, bifurcation, separatrix, separators, heteroclinic curves

⁶ Assistant professor of department of higher mathematic, Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod; math@agri.sci-nnov.ru

⁷ Assistant professor of department of higher mathematic, Nizhny Novgorod State Agricultural Academy, Nizhny Novgorod; ansakharov2008@yandex.ru